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Abstract—Workflow is an important way to mashup reusable 
software services to create value-added data analytics services. 
Workflow provenance is core to understand how services and 
workflows behaved in the past, which knowledge can be used to 
provide better recommendation. Existing workflow provenance 
management systems handle various types of provenance 
separately. A typical data science exploration scenario, 
however, calls for an integrated view of provenance and 
seamless transition among different types of provenance. In this 
paper, a graph-based, uniform provenance model is proposed to 
link together design-time and run-time provenance, by 
combining retrospective provenance, prospective provenance, 
and evolution provenance. Such a unified provenance model will 
not only facilitate workflow mining and exploration, but also 
facilitate workflow interoperability. The model is formalized 
into colored Petri nets for verification and monitoring 
management. A SQL-like query language is developed, which 
supports basic queries, recursive queries, and cross-provenance 
queries. To verify the effectiveness of our model, A web-based, 
collaborative workflow prototyping system is developed as a 
proof-of-concept. Experiments have been conducted to evaluate 
the effectiveness of the proposed SQL-like graph query against 
SQL query.  

Keywords-scientific workflow, integrated provenance model, 
design-time provenance, run-time provenance 

I. INTRODUCTION 
As the rapid development of big data, data-oriented 

workflows (or so called mashups) have become an important 
way to realize and streamline different tasks in the life cycle 
of big data analytics, such as data integration, data mining, and 
data visualization. In order not to recreate the wheels, existing 
data processing modules can be wrapped up as reusable 
services (i.e., APIs) in building value-added workflows. Thus, 
it is  important to understand how existing data analytics 
tools/modules have been used, so as to provide context-aware 
mashup/workflow recommendation [1]. Provenance 
management is core to examine past usages of services and 
explore possible mashup composition, in addition to helping 

people gain insights into reasoning, verify experiments and 
reproduce the results [2]. 

To date, workflow provenance management is generally 
divided into three categories: retrospective provenance, 
prospective provenance, and evolution provenance [3]. 
Retrospective provenance (r-prov) captures past workflow 
execution and data derivation, also called data provenance [4]. 
Prospective provenance (p-prov) captures representation of 
workflow structure [5, 6]. Evolution provenance (e-prov) 
captures how a workflow has become what it is now, also 
called provenance on process [5]. 

Putting the three forms of provenance side-by-side as 
shown in Fig. 1, we can see that they are actually captured at 
two phases during a workflow lifecycle: design time and run 
time. Prospective and evolution provenance are both captured 
at design time, which can be used to derive contributors, 
workflow structures and all historical designed versions. 
Retrospective provenance is captured at run time, which can 
be used to analyze data artifacts from different processes of 
workflows. Therefore, we categorize workflow provenance 
into design-time provenance and run-time provenance. 
Design-time provenance can be further categorized into 
structure-oriented provenance (i.e., prospective provenance) 
and action-oriented provenance (i.e., evolution provenance). 

Due to the exploratory nature of data-intensive study, 
researchers constantly move back and forth between the two 
worlds. Design-time and run-time provenance is in turn 
updated by these activities, as shown in Fig. 1. When 
researchers edit a workflow during design-time, all related 
operations are recorded in a history tree (e-prov). After the 
workflow is designed, it will be executed and data provenance 
(r-prov) will be generated and recorded. If the execution fails, 
the researchers may go back to revise the workflow and start 
another round of iteration. If the execution succeeds, the 
structure of the workflow (p-prov) will be persisted as a 
version. Even if an execution is successful, the researchers 
may also want to explore various paths, thus go back to 
design-time. 

During such iterative transitions between the two worlds, 
researchers may at any time wish to check among different 
types of provenance. For example, observing an interesting 
data product (r-prov) may trigger workflow developers to 
review corresponding workflow design (p-prov) and what 
design changes (e-prov) from an earlier version lead to the 
outcome. They may also rerun the workflow (p-prov) to verify 
the reproducibility of the workflow (r-prov), and tune the 
workflow (e-prov and p-prov) to explore various possibilities. 

Such a typical data science scenario calls for an integrated 
view of provenance and seamless exploration transition 

 
Fig. 1. Workflow provenance in two phases. 



among different types of provenance, that is, cross-
provenance query. However, no existing model or system 
collects all three forms of provenance. PROV [7] framework, 
endorsed by the World Wide Web Consortium (W3C), 
focuses on run-time provenance. Most Scientific Workflow 
Management Systems (SWFMSs) only support one or two 
types of provenance. For example, Kepler [8] and Taverna [9] 
store run-time provenance; Trident [10] and Data-One [11] 
store run-time and prospective provenance. VisTrails [4] 
stores run-time provenance and evolution provenance, while 
prospective provenance is implied by rebuilding workflow 
through history tree. In addition, existing SWFMSs store 
different types of provenance separately supported by 
different query methods. As a result, cross-provenance queries 
cannot be easily supported.  

To address these issues, we make three contributions in 
this paper. First, we propose a uniform workflow provenance 
model, aiming to bridge between workflow design-time and 
run-time. Without recreating the wheel, we have significantly 
extended the standard PROV model to combine various types 
of provenance in one unified model and store them in one 
graph. Second, we have formalized our provenance model 
using Colored Petri nets. Third, we have designed a SQL-like 
language to query workflow provenance based on our model, 
which supports basic queries, recursive queries, and cross-
provenance queries. In addition, to verify the effectiveness of 
our model, we have implemented a web-based, multi-user 
collaborative workflow prototyping system. To the best of our 
knowledge, we are the first effort to integrate all three forms 
of provenance into one uniform model, supported by 
formalization and graph-based query language and 
mechanism. Such a uniform provenance model will also 
facilitate workflow interoperability. 

The remainder of the paper is organized as follows. 
Section II discusses related work on data models for 
provenance. Section III introduces our uniform data model 
integrating three types of provenance generated in either 
design-time or run-time. Section IV formalizes our data model 
using Petri nets. Section V presents provenance store, query 
and recommendation based on our model. Section VI 
describes a prototyping system and reports our experimental 
results. We draw conclusion in Section VII. 

II. RELATED WORK 
Provenance helps to ensure reproducibility and sharing of 

scientific workflows. Therefore, provenance management has 
been widely acknowledged as a critical functionality for any 
Scientific Workflow Management Systems (SWFMSs) to 
capture and manage workflow information [11, 12]. There are 
three forms of provenance: prospective provenance (p-prov), 
retrospective provenance (r-prov) and provenance of process 
(e-prov). They respectively capture workflow specification, 
detailed log of workflow execution and workflow evolution. 
Various SWFMSs have different focuses on the provenance 
types [4-6]. Kepler [8] implements a provenance recorder to 
track information about workflow runs. Taverna [9] uses 
event logs to record data provenance, and adopts Semantic 
Web technologies to represent provenance metadata. 
VisTrails [4] records provenance for workflow evolution and 

data products [12]. In addition, several stand-alone 
provenance systems have been developed, including the 
PReServ system developed under the Provenance Aware 
Service Oriented Architecture (PASOA) project [13] and the 
Karma system [14].  

Because retrospective provenance does not directly depend 
on prospective provenance, most systems separately store 
retrospective provenance and prospective provenance. For 
example, Taverna uses SCUFL language to describe p-prov, 
while using RDF to store r-prov. VisTrails uses XML to 
capture p-prov, while use relational database to store r-prov 
[4]. Few systems support provenance of process [9] except 
VisTrails [4]. In contrast, we propose to build a uniform 
provenance model and use the uniform language to process 
provenance. 

To promote the interoperability of provenance among 
different workflow systems, the Open Provenance Model 
(OPM) was initiated in 2007 [15]. In recent years, PROV [7] 
framework, endorsed by the World Wide Web Consortium 
(W3C), formalizes inter-operable interchange of provenance 
information in heterogeneous environments. A number of 
emerging applications use either OPM or PROV model for 
capturing provenance traces [16, 17]. While OPM and PROV 
only represent retrospective provenance, D-PROV [11], 
ProvOne [18], and P-PLAN [19] have all proposed extensions 
to the PROV model for workflow structure. In contrast, we 
have extended PROV into an integrated data model carrying 
both design-time and run-time provenance. 

Some researchers focus on provenance storage and 
develop techniques to optimize query over the provenance 
models. Heinis and Alonso create an interval-based 
representation for provenance storage [29]. Chapman et al. 
propose a set of factorization processes and inheritance-based 
methods to reduce the size of actual provenance datasets [30]. 
To facilitate focused query and navigation over large amounts 
of provenance, Biton et al. develop a provenance abstraction 
technique to return only relevant and abstracted provenance 
information to a user [20].  

To support provenance query, provenance information can 
be extracted from log files generated by SWFMSs [4-6], and 
then stored into a relational database for query [21-23].  
Gadelha Jr et al. [24] propose query patterns to simplify query 
design. Anand et al. [25] propose a query language to query 
both lineage and structures on provenance graph and then 
store in a relational database. Because queries on evolution 
provenance focus on relationships, we decided to use graph 
database (neo4j, https://neo4j.com/) to store all forms of 
provenance, and query using the Cypher language 
(https://neo4j.com/developer/cypher-query-language).  

III. POVENANCE MODEL 
As shown in Fig. 1, researchers constantly visit back and 

forth between design-time and run-time during the 
development of a workflow. In order to provide seamless 
cross-provenance query, we propose a uniform provenance 
model carrying prospective provenance, evolution 
provenance, and retrospective provenance into one integrated 
model. Instead of recreating the wheel, we have extended the 



ad hoc standard PROV [21] model to build our unified 
provenance model. Fig. 2 illustrates our provenance model 
using as an ER model.  

The overall model is divided into design-time provenance 
(upper portion) and run-time provenance (lower portion) 
separately by lines. As shown in Fig. 2, the two worlds are 
connected through four portals. 

A. Design-time Provenance 
During workflow design time, provenance is generated in 

two formats, which are Action-Oriented Provenance and 
Structure-Oriented Provenance. Action-Oriented Provenance 
records history of workflow design actions, while Structure-
Oriented Provenance captures evolution of workflow 
structure. Action-oriented provenance can be organized as a 
tree structure where each node is an action and each path is 
an action sequence. Note that the structure can be obtained by 
traversing a path in the action history, however, it is more 
efficient to retrieve workflow structure directly. Therefore, 
our provenance model stores both of them. 

(1) Action-Oriented Provenance 
Action-Oriented Provenance (AOP) records action history 

in designing workflow. The ER model of AOP is on the left-
hand side of Fig. 2, delimited in a grey box. Action history 
forms a tree structure of provenance, where each node 
represents an action, and each edge connects two actions by 
their time partial relation. Hence, a path from the root node to 
any node in the history tree is related to a timestamp of the 
corresponding workflow. When a researcher implements an 
operation on a workflow, the operation is serialized to an 
action node in the AOP. Hence, AOP model includes five 
entity types (Person, Group, HistoryTree, Action and 
Operation) and four relation types (MemberOf, Performs, 

Serializes and RelatesTo). In addition, Operation entity has 
three types: add, delete and edit. 

(2) Structure-Oriented Provenance 
Structure-Oriented Provenance (SOP) captures the 

evolution of workflow structure. Although the PROV-DM 
only models workflow run-time provenance, some concepts 
can be used in design process, such as “derivation” and 
“attribution” relations. We apply them to represent the 
“derives” and “performs” relations in our model, respectively.  

In general, SOP is composed by one or more processors 
and datalinks, some of which may in turn include sub-
workflows. Processors are connected by data links through 
their input ports and output ports. Author information is 
caught separately, which is associated with every activity 
over any entity. Therefore, SOP model includes eight entity 
types, Person, Group, Workflow, DataLink, Processor, 
DataPort, InputPort and OutputPort, and six relation types, 
Derives, IsSubWorkflow, HasDataLink, HasProcessor, 
HasOutput, and HasInput. It should be noted that Operation 
is a relation in SOP but an entity in AOP. As for SOP, it 
represents three types of operations (Add, Edit and Delete) 
acting on the structure of a workflow. 

B. Run-time Provenance 
During workflow execution time, provenance captures past 
workflow execution and data derivation information. As 
mentioned above, the PROV-DM (PROV Data Model, 
https://www.w3.org/TR/prov-dm) is an ad hoc standard 
model for capturing run-time provenance. Therefore, we use 
PROV-DM to model run-time provenance, whose major 
components and relationships are presented in the bottom 
part of Fig. 2 and the same concepts with PROV-DM are 

  
Fig. 2. Provenance Data Model 



highlighted in grey. An artifact is an entity that can be either 
real or imaginary. A process refers to some software or 
procedure that acts upon or with artifacts. Therefore, the 
relationship between them is that processes utilize artifacts in 
producing artifacts. In other words, artifacts may be 
consumed, processed, or modified by processes. An agent is 
responsible for a process taking place.  

In our model, there are four entity types (Process, Artifact, 
Agent and Group) and five relationship types 
(WasDerivedFrom, Used, WasGeneratedBy, WasCreatedBy 
and MemberOf). 

C. Portals Linking Design-time and Run-time Worlds 
To combine run-time provenance and design-time 

provenance, we locate intrinsic connections between them. 
As shown in Fig. 2, the two worlds are connected through 
four portals: (1) a person who designs a workflow acts as an 
agent at run-time; (2) a designed workflow is executed and 
creates some artifacts; (3) a workflow is designed to take as 
input an artifact results in the run-time; and (4) a workflow is 
designed to take as output an artifact results in the run-time. 

In more detail, a workflow generated at design-time is 
executed as a process during the run-time. Therefore, 
“workflow” is the instance of “process.” Similarly, a person 
who involves in design-time is the agent who executes the 
workflow, so “person” is the instance of “agent.” Another 
important entity in run-time provenance is artifact, which is 
the output of an output port or the input of an input port.   

IV. POVENANCE MODEL FORMALIZATION 
In order to evaluate the correctness of our provenance 

model, we formalize it using petri nets. A Colored Petri Nets 
(CPN) is one type of graphical modelling language for 
concurrent systems. CPN allows tokens with a data value 
attached to them. This attached data value is called token 
color. Although the color can be of arbitrarily complex type, 
places in CPNs usually contain tokens of one type. This type 
is called color set of the place.  

We define Workflow-level Colored Petri Net (WCPN): 
A net is a tuple N = (P, T, A, Σ, C, N, E, G, I) where: 
• P= {workflow, action-oriented provenance, structure-

oriented provenance, ready, data port, result, runtime 
provenance, end} is a set of places. 

• T= {operation, finish, run, store, save, end} is a set 
of transitions. 

• Σ= {Version, Modified, Intention, State, WF} is a set of 
color sets defined within CPN model. WF is the 
combination (i.e., product in CPN) of other four colors. 

• C is a color function. It maps places in P into colors in Σ. 
• E is an arc expression function. It maps each arc into the 

expression e. The input and output types of the arc 
expressions must correspond to the type of the nodes the 
arc is connected to. 

• G is a guard function. It maps each transition t∈T to a 
guard expression g. The output of the guard expression 
should evaluate to Boolean value: true or false. There are 
four guards on four transitions, which are return, run, 
store and save. 
WCPN is illustrated in Fig.  3 as a Petri net representation 

of the overall two worlds. First, workflow is a combined 
token (“WF”) of four tokens, “Version,” “Modified,” “State,” 
and “Intention.” “Version” is the workflow version number; 
“Modified” is a bool token to show if the workflow is 
modified; “State” indicates whether execution is 
“Successful” or “Failed”; “Intention” indicates whether 
author wants to continue (“Edit” or “Run”) or leave 
(“Done”). Either during the design process or after execution, 
“Intention” token can decide if the author will leave no matter 
what “State” is. Otherwise, workflow structure has to be 
persisted after each successful execution. Note that multiple 
arcs can connect the same pair of nodes with different arc 
expressions. 

We model workflow-level petri-nets to cover scenarios 
in the real world. As shown in Fig. 2, we obtain traces and 
data provenance from the data model, then we can use petri-

 
Fig. 3. Relation between Workflow Design and Execution 



net (Fig. 3) to evaluate it. 

V. PROVENANCE MANAGEMENT 

A. Provenance Storage 
Since provenance query focuses on relations, we store 

both run-time and design-time provenance into a graph, 
which can be noted as G={V, E} where V represents nodes 
of entity and E represents edges of relation. For example, in 
design-time provenance, V includes “Processor,” “Datalink,” 
“Workflow” and so on. The types of E are “IsIncludedBy” 
and “IsDerivedBy.” In action-oriented provenance, V is type 
of action node and E represents temporal relation between 
two actions. Fig. 4 shows the representative graph of our 
model in a graph database. 

B. Provenance Query 
Based on the provenance data model, we pose the 

following provenance queries [27] that facilitate scientists to 
discover and analyze useful information in a workflow design 
and development process. We categorize queries into three 
types: (1) to analyze inner-workflow information, such as 
sub-structure, version-management; (2) to discover 
relationship in user-user network, such as frequent or 
potential collaboration; and (3) to find information in user-
workflow, such as contribution evaluation. We give some 
sample queries for each type as below: 

Q1: Inner-workflow queries: 
a. Show all the details about how Wv3 has been designed and 

evolved as it is; 
b. For workflow Wv3, which versions of comprising steps 1 and 

2 are used? Who designed the two steps? How are they 
designed or refined? How are they merged? 

c. What are the previous versions of Wv3? Why was it refined? 
Q2: user-user queries: 
a. Return all user pairs who designed some workflows 

collaboratively; 
b. For user u, recommend a potential collaborator to work on 

a workflow. 
Q3: user-workflow queries: 

a. Return all the designers who contributed to the design of Wv3; 
b. Return the sub-workflows designed or refined by user s1; 

Because a graph can provide information of various types 
of nodes and relations, it answers these queries by traversing 
paths in the graph. Q2b is not a basic query, so we will discuss 
it in the next part. Here we provide the following cypher code 
accordingly: 
Q1a:  

match (:Person)-[r]-()-[:IsIncludedBy*]->(:Entity{id:"Wv3"}) 
return r order by r.time 

Q1b:  
match (:Person)-[r]-(e)-[:IsIncludedBy*]->(:Entity{id:"en3"}) 
return e.name, e.version 

Q1c:  
match ()<-[r:IsDerivedBy*]-(:Entity{id:"Wv3"}) return r 

Q2a:  
match (p1)-[: ADD|EDIT|SAVE]->()-[:IsIncludedBy*]->()<-
[:IsIncludedBy*]-()<-[: ADD|EDIT|SAVE]-(p2) return p1,p2 

Q3a:  
match (:Entity{id:"Wv3"})<-[r:IsIncludedBy*]-()<-
[:ADD|EDIT|SAVE]-(p) return p 

Q3b:  
match ()-[r2:IsIncludedBy]-()<-[r1: ADD|EDIT]-
(p:Person{name:"s1"}) return r1, r2 

Additionally, to make graphical queries more friendly to 
users, we have designed a SQL-like language which is 
simple, flexible and effective to write queries. Cypher queries 
will be transformed into SQL-like queries. Therefore, 
scientists can use a familiar query language instead of 
learning a new one. Furthermore, they can avoid from writing 
redundant and complex queries that may contain multiple 
JOINs. For example, we convert some sample queries as 
below: 
Q1a: Select structure 

Where Name=‘workflow1’, version=‘1.1’ 
Q2a: Select collaborator 

Where Name=‘workflow1’, version=‘1.1’ 
Q3a:  Select contributor 

Where Name=‘workflow1’, version=‘1.1’ 

C. Recommendation 
Storing both run-time and design-time provenance in 

graphs not only serves basic queries, but also can answer 
advanced queries, like recommendation. Graph has been 

 

Fig. 4. Provenance storage in Neo4j graph database. 



widely used in recommendation for social networks [26], so 
methods can be referenced in workflow provenance graph. In 
this section, we explain three example recommendation 
scenarios that can be supported by our provenance model, as 
shown in Fig. 5. 

Recommend collaborator based on design-time and 
running time. Fig. 5 (1) aims to answer Q2b query. 
Collaborators are not necessarily in the same domain. For 
example, a group of scientists in computer science are 
designing workflow for scientists in Earth science, so the 
latter check and give feedback to the former by running the 
workflow. If another group of Earth scientists is going to use 
similar tasks, the computer science group is very likely to be 
their collaborator. Furthermore, it is easy for us to rank our 
recommendations by their design-time performance. 

match (q)-[:ADD|EDIT|SAVE]->()-[:IsIncludedBy*0..5]-
>(:Workflow{name:' wfName ', version : ' version '})\ 

    <-[r:IsIncludedBy*0..5]-()<- [:ADD|EDIT|SAVE]-
(p:Person{user:'user'}) return distinct(q) 

Recommend processor (sub-workflow) based on 
design-time and running time. As science and technology 
develop, there are numerous methods to accomplish a certain 
scientific task. However, different methods are good at 
different aspects so that they fit in different scenarios. For 
example, a method is suitable for running on large-scale 
datasets, while another method can achieve high accuracy on 
small datasets. Based on our running time and action history, 
we can recommend the most appropriate processor or 
workflow for a task under some specific scenario, as shown 
in Fig. 5(2). 

match (:Workflow{name:' wfName ',version:'version'})<-
[r:IsIncludedBy*]-(n) \ 

    unwind Labels(n) as l with distinct(l) as label, collect(n) as 
entity return label, entity 

Recommend actions based on running time and action 
history. A scientific experiment is typically a trial and error 
process, so scientists will update their design after running. 
For example, after scientists running a workflow, they get 
output of geolocations, as shown in Fig. 5(3). It has been 
found in the action history that scientists will probably 
visualize the output points on the map, so we recommend the 
action “add processor 2Dvisualization” to them. Therefore, 
different outputs may lead to corresponding subsequent 

actions. The combination of running-time result and action 
history indicates frequent pattern of outputs and actions. 

match (a:Action)-[:RELATESTO]->(w:Workflow)<-
[r:IsIncludedBy*]-(n) where id(a)="nodeId" \ 

    unwind Labels(n) as l with distinct(l) as label, 
collect(distinct n) as entity return label, entity 

VI. IMPLEMENTATIONS AND EXPERIMENTS 

A. Prototype system 
We have developed an online collaborative workbench 

system. It allows users to create workflows with multiple data 
processing web services and review workflow editing history 
tree. Users are allowed to collaborate on editing shared 
workflows, and create user groups for control the access to 
workflows.  

The system contains four main components: workflow 
metadata management, workflow design and history, 
workflow customized query, and online collaboration. We 
adopted MongoDB to store user (group) information and 
Neo4j to manage workflow provenance, respectively. Fig. 
6(a) is an example scenario of multi-user online 
collaboration, which supports both online and offline 
notifications. Assume Xiaoyi and Hongjun are two users 
collaborating in the same workflow project and editing at 
same time. Fig. 6(a) shows a scenario when Hongjun saved 
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(2) Recommend action 

Fig. 5. Examples of three types of recommendation. 

    
     (a)                                                                                                                        (b) 

Fig. 6. Collaborative workflow design system and SQL-like query support. 
 



workflow first, Xiaoyi thus received the notification from 
Hongjun (right window). Afterwards, Xiaoyi also modified 
the workflow, and she decided to save her work before 
transmitting the notification signal. As a result, Hongjun 
received the notification from Xiaoyi as well (left window). 
Hence, their works were both saved. Fig. 6(b) indicates three 
customized query examples and results: (1) structure query is 
to retrieve workflow structure of a specific version; (2) 
contributor query is to get all contributors to a specific 
version of workflow; (3) collaborator query is to find who 
else also worked on the same workflow.  

B. Query Comparison Experiment 
To compare the efficiency of implementing our model in 

a graph database with a relational database, we designed data 
schema in SQL as shown in Fig. 7. First, we give the 
comparison of computational complexity of two query 
methods. We assume the number of query labels (types of 
nodes, such as workflow, processor, and action) in a graph 
database is n, and the average number of nodes for the same 
label is A. Accordingly, the number of queried tables in a 
relational database is n, and the average table size is A. If a 
query in a graph database is to find a path containing all n 
node labels, its time complexity will be O(An). However, a 
query in a relational database has to join n tables, so its query 
complexity will be O(An).  

We also compared the performance using SQL and our 
SQL-like language to implement the three queries proposed 
in Section V(B). As shown below, writing queries in our 
SQL-like language can be simpler and more intuitive. For all 
kinds of queries, however, SQL must join multiple tables. 
Therefore, our language is not only easier for users to write, 
but also more efficient in execution. Screenshots of following 
queries result in our prototype system are shown in Fig. 6(b). 

• Queries written in SQL: 
Q1a:  
use wf; 
select processor.pr_name 
from include,processor , workflow 
where workflow.wf_name='workflow1' and 
workflow.version='1.1' and workflow.wf_id = include.en_id   
 and processor.pr_id = include.included_id  
union 
select datalink.dl_name 
from include,datalink , workflow 
where workflow.wf_name='workflow1' and 
workflow.version='1.1' and workflow.wf_id = include.en_id  
 and datalink.dl_id = include.included_id ; 
Q2a:  
Select p1. p_name, p2. p_name 
From person as p1, person as p2, workflow,action 
Where  workflow.wf_name='workflow1' 
 and workflow.version='1.1' 
 and p1.p_name!=p2.p_name 
 and workflow.wf_id = action.en_id; 
Q3a:   
Select person.p_name 
From person, action, include, workflow 
Where  workflow.wf_name='workflow1'  

and workflow.version='1.1' 
 and action.p_name = person.p_name   

and include.en_id = workflow.wf_id 
 and action.en_id = include.included_id ; 

C. Loading time and Data size Experiments 
To verify the effectiveness of our model, we designed 

experiments in neo4j for data loading time, querying time and 
data storage size. We simulated data on three variables: 
number of people collaborated, number of actions 
implemented, and number of forks in the history tree. As the 
results in Table 1 show, a graph database can effectively 
answer all kinds of queries, especially recursive queries, 
which are not well-supported by a relational database.  
Table 1. Simulation experiment in neo4j 

#people 1 2 3 
#Actions 4 8 12 
#Forks 0 1 2 
Loading time 30 ms 43 ms 71 ms 
Structure query 3 ms 9 ms 12 ms 
Contributor query 13 ms 17 ms 18 ms 
Collaborator query 5 ms 9 ms 12 ms 
History query 14 ms 20 ms 26 ms 
Size 233 KB 243 KB 277 KB 

VII. CONCLUSIONS 
In this paper, we have demonstrated that the integration of 

design-time and run-time workflow provenance helps 
scientists trace their work and collaboration more effectively. 
Based on this finding, we have developed an integrated data 
model for workflow provenance management. Root in the 
cross-provenance model, we show that new applications can 
be developed, such as advanced query and cross-provenance 
recommendation. 

In future work, we plan to further improve the efficiency 
of cross-provenance query based on the integrated graph. 

 

 
Fig. 7 Class diagram of Relational Database. 

 



Additionally, we also plan to utilize features extracted from 
provenance graph to improve recommendation accuracy. 
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