
Linking Design-Time and Run-Time: A Graph-based Uniform Workflow
Provenance Model

Xiaoyi Duan, Jia Zhang, Qihao Bao
Department of Electrical and Computer Engineering

Carnegie Mellon University – Silicon Valley
{xiaoyi.duan, jia.zhang, qihao.bao}@sv.cmu.edu

Abstract—Workflow is an important way to mashup reusable
software services to create value-added data analytics services.
Workflow provenance is core to understand how services and
workflows behaved in the past, which knowledge can be used to
provide better recommendation. Existing workflow provenance
management systems handle various types of provenance
separately. A typical data science exploration scenario,
however, calls for an integrated view of provenance and
seamless transition among different types of provenance. In this
paper, a graph-based, uniform provenance model is proposed to
link together design-time and run-time provenance, by
combining retrospective provenance, prospective provenance,
and evolution provenance. Such a unified provenance model will
not only facilitate workflow mining and exploration, but also
facilitate workflow interoperability. The model is formalized
into colored Petri nets for verification and monitoring
management. A SQL-like query language is developed, which
supports basic queries, recursive queries, and cross-provenance
queries. To verify the effectiveness of our model, A web-based,
collaborative workflow prototyping system is developed as a
proof-of-concept. Experiments have been conducted to evaluate
the effectiveness of the proposed SQL-like graph query against
SQL query.

Keywords-scientific workflow, integrated provenance model,
design-time provenance, run-time provenance

I. INTRODUCTION
As the rapid development of big data, data-oriented

workflows (or so called mashups) have become an important
way to realize and streamline different tasks in the life cycle
of big data analytics, such as data integration, data mining, and
data visualization. In order not to recreate the wheels, existing
data processing modules can be wrapped up as reusable
services (i.e., APIs) in building value-added workflows. Thus,
it is important to understand how existing data analytics
tools/modules have been used, so as to provide context-aware
mashup/workflow recommendation [1]. Provenance
management is core to examine past usages of services and
explore possible mashup composition, in addition to helping

people gain insights into reasoning, verify experiments and
reproduce the results [2].

To date, workflow provenance management is generally
divided into three categories: retrospective provenance,
prospective provenance, and evolution provenance [3].
Retrospective provenance (r-prov) captures past workflow
execution and data derivation, also called data provenance [4].
Prospective provenance (p-prov) captures representation of
workflow structure [5, 6]. Evolution provenance (e-prov)
captures how a workflow has become what it is now, also
called provenance on process [5].

Putting the three forms of provenance side-by-side as
shown in Fig. 1, we can see that they are actually captured at
two phases during a workflow lifecycle: design time and run
time. Prospective and evolution provenance are both captured
at design time, which can be used to derive contributors,
workflow structures and all historical designed versions.
Retrospective provenance is captured at run time, which can
be used to analyze data artifacts from different processes of
workflows. Therefore, we categorize workflow provenance
into design-time provenance and run-time provenance.
Design-time provenance can be further categorized into
structure-oriented provenance (i.e., prospective provenance)
and action-oriented provenance (i.e., evolution provenance).

Due to the exploratory nature of data-intensive study,
researchers constantly move back and forth between the two
worlds. Design-time and run-time provenance is in turn
updated by these activities, as shown in Fig. 1. When
researchers edit a workflow during design-time, all related
operations are recorded in a history tree (e-prov). After the
workflow is designed, it will be executed and data provenance
(r-prov) will be generated and recorded. If the execution fails,
the researchers may go back to revise the workflow and start
another round of iteration. If the execution succeeds, the
structure of the workflow (p-prov) will be persisted as a
version. Even if an execution is successful, the researchers
may also want to explore various paths, thus go back to
design-time.

During such iterative transitions between the two worlds,
researchers may at any time wish to check among different
types of provenance. For example, observing an interesting
data product (r-prov) may trigger workflow developers to
review corresponding workflow design (p-prov) and what
design changes (e-prov) from an earlier version lead to the
outcome. They may also rerun the workflow (p-prov) to verify
the reproducibility of the workflow (r-prov), and tune the
workflow (e-prov and p-prov) to explore various possibilities.

Such a typical data science scenario calls for an integrated
view of provenance and seamless exploration transition

Fig. 1. Workflow provenance in two phases.

among different types of provenance, that is, cross-
provenance query. However, no existing model or system
collects all three forms of provenance. PROV [7] framework,
endorsed by the World Wide Web Consortium (W3C),
focuses on run-time provenance. Most Scientific Workflow
Management Systems (SWFMSs) only support one or two
types of provenance. For example, Kepler [8] and Taverna [9]
store run-time provenance; Trident [10] and Data-One [11]
store run-time and prospective provenance. VisTrails [4]
stores run-time provenance and evolution provenance, while
prospective provenance is implied by rebuilding workflow
through history tree. In addition, existing SWFMSs store
different types of provenance separately supported by
different query methods. As a result, cross-provenance queries
cannot be easily supported.

To address these issues, we make three contributions in
this paper. First, we propose a uniform workflow provenance
model, aiming to bridge between workflow design-time and
run-time. Without recreating the wheel, we have significantly
extended the standard PROV model to combine various types
of provenance in one unified model and store them in one
graph. Second, we have formalized our provenance model
using Colored Petri nets. Third, we have designed a SQL-like
language to query workflow provenance based on our model,
which supports basic queries, recursive queries, and cross-
provenance queries. In addition, to verify the effectiveness of
our model, we have implemented a web-based, multi-user
collaborative workflow prototyping system. To the best of our
knowledge, we are the first effort to integrate all three forms
of provenance into one uniform model, supported by
formalization and graph-based query language and
mechanism. Such a uniform provenance model will also
facilitate workflow interoperability.

The remainder of the paper is organized as follows.
Section II discusses related work on data models for
provenance. Section III introduces our uniform data model
integrating three types of provenance generated in either
design-time or run-time. Section IV formalizes our data model
using Petri nets. Section V presents provenance store, query
and recommendation based on our model. Section VI
describes a prototyping system and reports our experimental
results. We draw conclusion in Section VII.

II. RELATED WORK
Provenance helps to ensure reproducibility and sharing of

scientific workflows. Therefore, provenance management has
been widely acknowledged as a critical functionality for any
Scientific Workflow Management Systems (SWFMSs) to
capture and manage workflow information [11, 12]. There are
three forms of provenance: prospective provenance (p-prov),
retrospective provenance (r-prov) and provenance of process
(e-prov). They respectively capture workflow specification,
detailed log of workflow execution and workflow evolution.
Various SWFMSs have different focuses on the provenance
types [4-6]. Kepler [8] implements a provenance recorder to
track information about workflow runs. Taverna [9] uses
event logs to record data provenance, and adopts Semantic
Web technologies to represent provenance metadata.
VisTrails [4] records provenance for workflow evolution and

data products [12]. In addition, several stand-alone
provenance systems have been developed, including the
PReServ system developed under the Provenance Aware
Service Oriented Architecture (PASOA) project [13] and the
Karma system [14].

Because retrospective provenance does not directly depend
on prospective provenance, most systems separately store
retrospective provenance and prospective provenance. For
example, Taverna uses SCUFL language to describe p-prov,
while using RDF to store r-prov. VisTrails uses XML to
capture p-prov, while use relational database to store r-prov
[4]. Few systems support provenance of process [9] except
VisTrails [4]. In contrast, we propose to build a uniform
provenance model and use the uniform language to process
provenance.

To promote the interoperability of provenance among
different workflow systems, the Open Provenance Model
(OPM) was initiated in 2007 [15]. In recent years, PROV [7]
framework, endorsed by the World Wide Web Consortium
(W3C), formalizes inter-operable interchange of provenance
information in heterogeneous environments. A number of
emerging applications use either OPM or PROV model for
capturing provenance traces [16, 17]. While OPM and PROV
only represent retrospective provenance, D-PROV [11],
ProvOne [18], and P-PLAN [19] have all proposed extensions
to the PROV model for workflow structure. In contrast, we
have extended PROV into an integrated data model carrying
both design-time and run-time provenance.

Some researchers focus on provenance storage and
develop techniques to optimize query over the provenance
models. Heinis and Alonso create an interval-based
representation for provenance storage [29]. Chapman et al.
propose a set of factorization processes and inheritance-based
methods to reduce the size of actual provenance datasets [30].
To facilitate focused query and navigation over large amounts
of provenance, Biton et al. develop a provenance abstraction
technique to return only relevant and abstracted provenance
information to a user [20].

To support provenance query, provenance information can
be extracted from log files generated by SWFMSs [4-6], and
then stored into a relational database for query [21-23].
Gadelha Jr et al. [24] propose query patterns to simplify query
design. Anand et al. [25] propose a query language to query
both lineage and structures on provenance graph and then
store in a relational database. Because queries on evolution
provenance focus on relationships, we decided to use graph
database (neo4j, https://neo4j.com/) to store all forms of
provenance, and query using the Cypher language
(https://neo4j.com/developer/cypher-query-language).

III. POVENANCE MODEL
As shown in Fig. 1, researchers constantly visit back and

forth between design-time and run-time during the
development of a workflow. In order to provide seamless
cross-provenance query, we propose a uniform provenance
model carrying prospective provenance, evolution
provenance, and retrospective provenance into one integrated
model. Instead of recreating the wheel, we have extended the

ad hoc standard PROV [21] model to build our unified
provenance model. Fig. 2 illustrates our provenance model
using as an ER model.

The overall model is divided into design-time provenance
(upper portion) and run-time provenance (lower portion)
separately by lines. As shown in Fig. 2, the two worlds are
connected through four portals.

A. Design-time Provenance
During workflow design time, provenance is generated in

two formats, which are Action-Oriented Provenance and
Structure-Oriented Provenance. Action-Oriented Provenance
records history of workflow design actions, while Structure-
Oriented Provenance captures evolution of workflow
structure. Action-oriented provenance can be organized as a
tree structure where each node is an action and each path is
an action sequence. Note that the structure can be obtained by
traversing a path in the action history, however, it is more
efficient to retrieve workflow structure directly. Therefore,
our provenance model stores both of them.

(1) Action-Oriented Provenance
Action-Oriented Provenance (AOP) records action history

in designing workflow. The ER model of AOP is on the left-
hand side of Fig. 2, delimited in a grey box. Action history
forms a tree structure of provenance, where each node
represents an action, and each edge connects two actions by
their time partial relation. Hence, a path from the root node to
any node in the history tree is related to a timestamp of the
corresponding workflow. When a researcher implements an
operation on a workflow, the operation is serialized to an
action node in the AOP. Hence, AOP model includes five
entity types (Person, Group, HistoryTree, Action and
Operation) and four relation types (MemberOf, Performs,

Serializes and RelatesTo). In addition, Operation entity has
three types: add, delete and edit.

(2) Structure-Oriented Provenance
Structure-Oriented Provenance (SOP) captures the

evolution of workflow structure. Although the PROV-DM
only models workflow run-time provenance, some concepts
can be used in design process, such as “derivation” and
“attribution” relations. We apply them to represent the
“derives” and “performs” relations in our model, respectively.

In general, SOP is composed by one or more processors
and datalinks, some of which may in turn include sub-
workflows. Processors are connected by data links through
their input ports and output ports. Author information is
caught separately, which is associated with every activity
over any entity. Therefore, SOP model includes eight entity
types, Person, Group, Workflow, DataLink, Processor,
DataPort, InputPort and OutputPort, and six relation types,
Derives, IsSubWorkflow, HasDataLink, HasProcessor,
HasOutput, and HasInput. It should be noted that Operation
is a relation in SOP but an entity in AOP. As for SOP, it
represents three types of operations (Add, Edit and Delete)
acting on the structure of a workflow.

B. Run-time Provenance
During workflow execution time, provenance captures past
workflow execution and data derivation information. As
mentioned above, the PROV-DM (PROV Data Model,
https://www.w3.org/TR/prov-dm) is an ad hoc standard
model for capturing run-time provenance. Therefore, we use
PROV-DM to model run-time provenance, whose major
components and relationships are presented in the bottom
part of Fig. 2 and the same concepts with PROV-DM are

Fig. 2. Provenance Data Model

highlighted in grey. An artifact is an entity that can be either
real or imaginary. A process refers to some software or
procedure that acts upon or with artifacts. Therefore, the
relationship between them is that processes utilize artifacts in
producing artifacts. In other words, artifacts may be
consumed, processed, or modified by processes. An agent is
responsible for a process taking place.

In our model, there are four entity types (Process, Artifact,
Agent and Group) and five relationship types
(WasDerivedFrom, Used, WasGeneratedBy, WasCreatedBy
and MemberOf).

C. Portals Linking Design-time and Run-time Worlds
To combine run-time provenance and design-time

provenance, we locate intrinsic connections between them.
As shown in Fig. 2, the two worlds are connected through
four portals: (1) a person who designs a workflow acts as an
agent at run-time; (2) a designed workflow is executed and
creates some artifacts; (3) a workflow is designed to take as
input an artifact results in the run-time; and (4) a workflow is
designed to take as output an artifact results in the run-time.

In more detail, a workflow generated at design-time is
executed as a process during the run-time. Therefore,
“workflow” is the instance of “process.” Similarly, a person
who involves in design-time is the agent who executes the
workflow, so “person” is the instance of “agent.” Another
important entity in run-time provenance is artifact, which is
the output of an output port or the input of an input port.

IV. POVENANCE MODEL FORMALIZATION
In order to evaluate the correctness of our provenance

model, we formalize it using petri nets. A Colored Petri Nets
(CPN) is one type of graphical modelling language for
concurrent systems. CPN allows tokens with a data value
attached to them. This attached data value is called token
color. Although the color can be of arbitrarily complex type,
places in CPNs usually contain tokens of one type. This type
is called color set of the place.

We define Workflow-level Colored Petri Net (WCPN):
A net is a tuple N = (P, T, A, Σ, C, N, E, G, I) where:
• P= {workflow, action-oriented provenance, structure-

oriented provenance, ready, data port, result, runtime
provenance, end} is a set of places.

• T= {operation, finish, run, store, save, end} is a set
of transitions.

• Σ= {Version, Modified, Intention, State, WF} is a set of
color sets defined within CPN model. WF is the
combination (i.e., product in CPN) of other four colors.

• C is a color function. It maps places in P into colors in Σ.
• E is an arc expression function. It maps each arc into the

expression e. The input and output types of the arc
expressions must correspond to the type of the nodes the
arc is connected to.

• G is a guard function. It maps each transition t∈T to a
guard expression g. The output of the guard expression
should evaluate to Boolean value: true or false. There are
four guards on four transitions, which are return, run,
store and save.
WCPN is illustrated in Fig. 3 as a Petri net representation

of the overall two worlds. First, workflow is a combined
token (“WF”) of four tokens, “Version,” “Modified,” “State,”
and “Intention.” “Version” is the workflow version number;
“Modified” is a bool token to show if the workflow is
modified; “State” indicates whether execution is
“Successful” or “Failed”; “Intention” indicates whether
author wants to continue (“Edit” or “Run”) or leave
(“Done”). Either during the design process or after execution,
“Intention” token can decide if the author will leave no matter
what “State” is. Otherwise, workflow structure has to be
persisted after each successful execution. Note that multiple
arcs can connect the same pair of nodes with different arc
expressions.

We model workflow-level petri-nets to cover scenarios
in the real world. As shown in Fig. 2, we obtain traces and
data provenance from the data model, then we can use petri-

Fig. 3. Relation between Workflow Design and Execution

net (Fig. 3) to evaluate it.

V. PROVENANCE MANAGEMENT

A. Provenance Storage
Since provenance query focuses on relations, we store

both run-time and design-time provenance into a graph,
which can be noted as G={V, E} where V represents nodes
of entity and E represents edges of relation. For example, in
design-time provenance, V includes “Processor,” “Datalink,”
“Workflow” and so on. The types of E are “IsIncludedBy”
and “IsDerivedBy.” In action-oriented provenance, V is type
of action node and E represents temporal relation between
two actions. Fig. 4 shows the representative graph of our
model in a graph database.

B. Provenance Query
Based on the provenance data model, we pose the

following provenance queries [27] that facilitate scientists to
discover and analyze useful information in a workflow design
and development process. We categorize queries into three
types: (1) to analyze inner-workflow information, such as
sub-structure, version-management; (2) to discover
relationship in user-user network, such as frequent or
potential collaboration; and (3) to find information in user-
workflow, such as contribution evaluation. We give some
sample queries for each type as below:

Q1: Inner-workflow queries:
a. Show all the details about how Wv3 has been designed and

evolved as it is;
b. For workflow Wv3, which versions of comprising steps 1 and

2 are used? Who designed the two steps? How are they
designed or refined? How are they merged?

c. What are the previous versions of Wv3? Why was it refined?
Q2: user-user queries:
a. Return all user pairs who designed some workflows

collaboratively;
b. For user u, recommend a potential collaborator to work on

a workflow.
Q3: user-workflow queries:

a. Return all the designers who contributed to the design of Wv3;
b. Return the sub-workflows designed or refined by user s1;

Because a graph can provide information of various types
of nodes and relations, it answers these queries by traversing
paths in the graph. Q2b is not a basic query, so we will discuss
it in the next part. Here we provide the following cypher code
accordingly:
Q1a:

match (:Person)-[r]-()-[:IsIncludedBy*]->(:Entity{id:"Wv3"})
return r order by r.time

Q1b:
match (:Person)-[r]-(e)-[:IsIncludedBy*]->(:Entity{id:"en3"})
return e.name, e.version

Q1c:
match ()<-[r:IsDerivedBy*]-(:Entity{id:"Wv3"}) return r

Q2a:
match (p1)-[: ADD|EDIT|SAVE]->()-[:IsIncludedBy*]->()<-
[:IsIncludedBy*]-()<-[: ADD|EDIT|SAVE]-(p2) return p1,p2

Q3a:
match (:Entity{id:"Wv3"})<-[r:IsIncludedBy*]-()<-
[:ADD|EDIT|SAVE]-(p) return p

Q3b:
match ()-[r2:IsIncludedBy]-()<-[r1: ADD|EDIT]-
(p:Person{name:"s1"}) return r1, r2

Additionally, to make graphical queries more friendly to
users, we have designed a SQL-like language which is
simple, flexible and effective to write queries. Cypher queries
will be transformed into SQL-like queries. Therefore,
scientists can use a familiar query language instead of
learning a new one. Furthermore, they can avoid from writing
redundant and complex queries that may contain multiple
JOINs. For example, we convert some sample queries as
below:
Q1a: Select structure

Where Name=‘workflow1’, version=‘1.1’
Q2a: Select collaborator

Where Name=‘workflow1’, version=‘1.1’
Q3a: Select contributor

Where Name=‘workflow1’, version=‘1.1’

C. Recommendation
Storing both run-time and design-time provenance in

graphs not only serves basic queries, but also can answer
advanced queries, like recommendation. Graph has been

Fig. 4. Provenance storage in Neo4j graph database.

widely used in recommendation for social networks [26], so
methods can be referenced in workflow provenance graph. In
this section, we explain three example recommendation
scenarios that can be supported by our provenance model, as
shown in Fig. 5.

Recommend collaborator based on design-time and
running time. Fig. 5 (1) aims to answer Q2b query.
Collaborators are not necessarily in the same domain. For
example, a group of scientists in computer science are
designing workflow for scientists in Earth science, so the
latter check and give feedback to the former by running the
workflow. If another group of Earth scientists is going to use
similar tasks, the computer science group is very likely to be
their collaborator. Furthermore, it is easy for us to rank our
recommendations by their design-time performance.

match (q)-[:ADD|EDIT|SAVE]->()-[:IsIncludedBy*0..5]-
>(:Workflow{name:' wfName ', version : ' version '})\

 <-[r:IsIncludedBy*0..5]-()<- [:ADD|EDIT|SAVE]-
(p:Person{user:'user'}) return distinct(q)

Recommend processor (sub-workflow) based on
design-time and running time. As science and technology
develop, there are numerous methods to accomplish a certain
scientific task. However, different methods are good at
different aspects so that they fit in different scenarios. For
example, a method is suitable for running on large-scale
datasets, while another method can achieve high accuracy on
small datasets. Based on our running time and action history,
we can recommend the most appropriate processor or
workflow for a task under some specific scenario, as shown
in Fig. 5(2).

match (:Workflow{name:' wfName ',version:'version'})<-
[r:IsIncludedBy*]-(n) \

 unwind Labels(n) as l with distinct(l) as label, collect(n) as
entity return label, entity

Recommend actions based on running time and action
history. A scientific experiment is typically a trial and error
process, so scientists will update their design after running.
For example, after scientists running a workflow, they get
output of geolocations, as shown in Fig. 5(3). It has been
found in the action history that scientists will probably
visualize the output points on the map, so we recommend the
action “add processor 2Dvisualization” to them. Therefore,
different outputs may lead to corresponding subsequent

actions. The combination of running-time result and action
history indicates frequent pattern of outputs and actions.

match (a:Action)-[:RELATESTO]->(w:Workflow)<-
[r:IsIncludedBy*]-(n) where id(a)="nodeId" \

 unwind Labels(n) as l with distinct(l) as label,
collect(distinct n) as entity return label, entity

VI. IMPLEMENTATIONS AND EXPERIMENTS

A. Prototype system
We have developed an online collaborative workbench

system. It allows users to create workflows with multiple data
processing web services and review workflow editing history
tree. Users are allowed to collaborate on editing shared
workflows, and create user groups for control the access to
workflows.

The system contains four main components: workflow
metadata management, workflow design and history,
workflow customized query, and online collaboration. We
adopted MongoDB to store user (group) information and
Neo4j to manage workflow provenance, respectively. Fig.
6(a) is an example scenario of multi-user online
collaboration, which supports both online and offline
notifications. Assume Xiaoyi and Hongjun are two users
collaborating in the same workflow project and editing at
same time. Fig. 6(a) shows a scenario when Hongjun saved

(1) Recommend collaborator (2) Recommend processor

(2) Recommend action

Fig. 5. Examples of three types of recommendation.

 (a) (b)

Fig. 6. Collaborative workflow design system and SQL-like query support.

workflow first, Xiaoyi thus received the notification from
Hongjun (right window). Afterwards, Xiaoyi also modified
the workflow, and she decided to save her work before
transmitting the notification signal. As a result, Hongjun
received the notification from Xiaoyi as well (left window).
Hence, their works were both saved. Fig. 6(b) indicates three
customized query examples and results: (1) structure query is
to retrieve workflow structure of a specific version; (2)
contributor query is to get all contributors to a specific
version of workflow; (3) collaborator query is to find who
else also worked on the same workflow.

B. Query Comparison Experiment
To compare the efficiency of implementing our model in

a graph database with a relational database, we designed data
schema in SQL as shown in Fig. 7. First, we give the
comparison of computational complexity of two query
methods. We assume the number of query labels (types of
nodes, such as workflow, processor, and action) in a graph
database is n, and the average number of nodes for the same
label is A. Accordingly, the number of queried tables in a
relational database is n, and the average table size is A. If a
query in a graph database is to find a path containing all n
node labels, its time complexity will be O(An). However, a
query in a relational database has to join n tables, so its query
complexity will be O(An).

We also compared the performance using SQL and our
SQL-like language to implement the three queries proposed
in Section V(B). As shown below, writing queries in our
SQL-like language can be simpler and more intuitive. For all
kinds of queries, however, SQL must join multiple tables.
Therefore, our language is not only easier for users to write,
but also more efficient in execution. Screenshots of following
queries result in our prototype system are shown in Fig. 6(b).

• Queries written in SQL:
Q1a:
use wf;
select processor.pr_name
from include,processor , workflow
where workflow.wf_name='workflow1' and
workflow.version='1.1' and workflow.wf_id = include.en_id
 and processor.pr_id = include.included_id
union
select datalink.dl_name
from include,datalink , workflow
where workflow.wf_name='workflow1' and
workflow.version='1.1' and workflow.wf_id = include.en_id
 and datalink.dl_id = include.included_id ;
Q2a:
Select p1. p_name, p2. p_name
From person as p1, person as p2, workflow,action
Where workflow.wf_name='workflow1'
 and workflow.version='1.1'
 and p1.p_name!=p2.p_name
 and workflow.wf_id = action.en_id;
Q3a:
Select person.p_name
From person, action, include, workflow
Where workflow.wf_name='workflow1'

and workflow.version='1.1'
 and action.p_name = person.p_name

and include.en_id = workflow.wf_id
 and action.en_id = include.included_id ;

C. Loading time and Data size Experiments
To verify the effectiveness of our model, we designed

experiments in neo4j for data loading time, querying time and
data storage size. We simulated data on three variables:
number of people collaborated, number of actions
implemented, and number of forks in the history tree. As the
results in Table 1 show, a graph database can effectively
answer all kinds of queries, especially recursive queries,
which are not well-supported by a relational database.
Table 1. Simulation experiment in neo4j

#people 1 2 3
#Actions 4 8 12
#Forks 0 1 2
Loading time 30 ms 43 ms 71 ms
Structure query 3 ms 9 ms 12 ms
Contributor query 13 ms 17 ms 18 ms
Collaborator query 5 ms 9 ms 12 ms
History query 14 ms 20 ms 26 ms
Size 233 KB 243 KB 277 KB

VII. CONCLUSIONS
In this paper, we have demonstrated that the integration of

design-time and run-time workflow provenance helps
scientists trace their work and collaboration more effectively.
Based on this finding, we have developed an integrated data
model for workflow provenance management. Root in the
cross-provenance model, we show that new applications can
be developed, such as advanced query and cross-provenance
recommendation.

In future work, we plan to further improve the efficiency
of cross-provenance query based on the integrated graph.

Fig. 7 Class diagram of Relational Database.

Additionally, we also plan to utilize features extracted from
provenance graph to improve recommendation accuracy.

ACKNOWLEDGMENT
This work is partially supported by National Science

Foundation and National Aeronautics and Space
Administration, under grants NSF ACI-1443069,
NNX16AB22G, and NNX16AE15G. We appreciate Xiaozhe
Wang, Hongyang Wang, and Hector Guo for their software
development efforts.

REFERENCES
[1] Zhong, Y., Fan, Y., Huang, K., Tan, W. and Zhang, J. "Time-aware

service recommendation for mashup creation," IEEE Transactions on
Services Computing, 8(3), pp.356-368.

[2] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi, "Prospective and
Retrospective Provenance Collection in Scientific Workflow
Environments," in Proceedings of IEEE International Conference on
Services Computing (SCC), 2010, pp. 449-456.

[3] Mattoso, Marta, and Boris Glavic, eds. "Provenance and Annotation of
Data and Processes," 6th International Provenance and Annotation
Workshop, IPAW 2016, McLean, VA, USA, June 7-8, 2016, Vol.
9672. Springer.

[4] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, and C.E. Scheidegger,
"Managing Rapidly-Evolving Scientific Workflows," Lecture Notes in
Computer Science, vol. 4145/2006, 2006, 10–18.

[5] J. Freire, D. Koop, E. Santos, and C.T. Silva, "Provenance for
Computational Tasks: A Survey," Computing in Science and
Engineering (CSE), 10(3), 2008, pp. 11-21.

[6] Y. Simmhan, B. Plale, and D. Gannon, "A Survey of Data Provenance
in e-Science," SIGMOD Record, 34(3), 2005, pp. 31–36.

[7] W3C, An Overview of the PROV Family of Documents; Available
from: https://www.w3.org/TR/prov-overview.

[8] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E.A. Lee, J. Tao, and Y. Zhao, "Scientific Workflow Management and
the Kepler System," Concurrency and Computation: Practice &
Experience, 18(10), 2006, pp. 1039-1065.

[9] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K.
Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R.
Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe, "Taverna:
Lessons in Creating a Workflow Environment for the Life Sciences,"
Concurrency and Computation: Practice & Experience, 18(10), 2006,
pp. 1067–1100.

[10] E.C. Withana, B. Plale, R. Barga, and N. Araujo, "Versioning for
workflow evolution," Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, 2010, pp.
756-765.

[11] P. Missier, , S.C. Dey, K. Belhajjame, V. Cuevas-Vicenttín, and B.
Ludäscher. "D-PROV: Extending the PROV Provenance Model with
Workflow Structure." In Proceedings of the 5th USENIX Workshop on
the Theory and Practice of Provenance (TaPP), 2013.

[12] "The Joint Task Force on Computing Curricula, Computing Curricula
2001," Journal of Educational Computing Research, 1(3), 2001, pp. 1-
240.

[13] P. Groth, S. Miles, W. Fang, S.C. Wong, K.-P. Zauner, and L. Moreau,
"Recording and Using Provenance in a Protein Compressibility
Experiment," in Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing (HPDC),
2005, pp. 201-208.

[14] Y. Simmhan, B. Plale, and D. Gannon, "A Framework for Collecting
Provenance in Data-Centric Scientific Workflows," in Proceedings of
IEEE International Conference on Web Services (ICWS), 2006, pp.
427–436.

[15] The Open Provenance Model; Available from:
http://openprovenance.org/.

[16] R. Bose and J. Frew, "Lineage Retrieval for Scientific Data Processing:
A Survey," ACM Comput. Surv., 37(1) , 2005, pp. 1-28.

[17] V. Cuevas-Vicenttin, S. Dey, M. Wang, T. Song, and B. Ludäscher,
"Modeling and querying scientific workflow provenance in the D-
OPM," in Proceedings of High Performance Computing, Networking,
Storage and Analysis, SC Companion, 2012, pp. 119-128.

[18] ProvONE: A PROV Extension Data Model for Scientific Workflow
Provenance (2015); Available fron:
http://vcvcomputing.com/provone/provone.html

[19] Garijo, Daniel, and Yolanda Gil. "Augmenting prov with plans in p-
plan: scientific processes as linked data." CEUR Workshop
Proceedings, 2012.

[20] O. Biton, S.C. Boulakia, S.B. Davidson, and C.S. Hara, "Querying and
Managing Provenance through User Views in Scientific Workflows,"
in Proceedings of IEEE 24th International Conference on Data
Engineering (ICDE), 2008, pp. 1072-1081.

[21] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, "Storing and
Querying Scientific Workflow Provenance Metadata Using an
RDBMS," in Proceedings of IEEE International Conference on e-
Science and Grid Computing, 2007, pp. 611-618.

[22] O. Biton, S. Cohen-Boulakia, S.B. Davidson, and C.S. Hara, "Querying
and Managing Provenance through User Views in Scientific
Workflows," in Proceedings of IEEE 24th International Conference on
Data Engineering, 2008, pp. 1072-1081.

[23] C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and
C. Silva, "Tackling the Provenance Challenge One Layer at a Time,"
Concurrency and Computation: Practice and Experience, 20(5), 2008,
pp. 473-483.

[24] Gadelha Jr, Luiz MR, Marta Mattoso, Michael Wilde, and Ian T.
Foster. "Provenance Query Patterns for Many-Task Scientific
Computing," In Proceedings of the 3rd USENIX Workshop on the
Theory and Practice of Provenance (TaPP), 2011.

[25] K. Anand, S. Bowers, and B. Ludäscher, "Techniques for Efficiently
Querying Scientific Workflow Provenance Graphs," in Proceedings of
EDBT, 2010, pp. 287-298.

[26] Konstas, Ioannis, Vassilios Stathopoulos, and Joemon M. Jose. "On
Social Networks and Collaborative Recommendation," in Proceedings
of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2009, pp. 195-202.

[27] Zhang J, Bao Q, Duan X, Lu S, Xue L, Shi R, Tang P. "Collaborative
Scientific Workflow Composition as a Service: An Infrastructure
Supporting Collaborative Data Analytics Workflow Design and
Management," IEEE 2nd International Conference on Collaboration
and Internet Computing (CIC), 2016, pp. 219-228.

[28] Woodman, Simon, Hugo Hiden, and Paul Watson. "Workflow
provenance: an analysis of long term storage costs." Proceedings of the
10th Workshop on Workflows in Support of Large-Scale Science.
ACM, 2015.

[29] T. Heinis and G. Alonso, "Efficient Lineage Tracking for Scientific
Workflows," in Proceedings of ACM International Conference on
Management of Data (SIGMOD), 2008, pp. 1007-1018.

[30] A. Chapman, H.V. Jagadish, and P. Ramanan, "Efficient Provenance
Storage," in Proceedings of ACM International Conference on
Management of Data (SIGMOD), 2008, pp. 993-1006.

