Linking Design-Time and Run-Time:

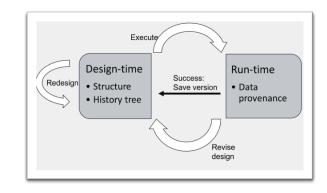
A Graph-based Uniform Workflow Provenance Model

¹Xiaoyi Duan, ¹Jia Zhang, ¹Qihao Bao, ²Rahul Ramachandran, ³Tsengdar J. Lee, ⁴Seungwon Lee, ⁴Lei Pan

1 Department of Electrical and Computer Engineering, Carnegie Mellon University, USA 2 NASA/MSFC, USA

3 Science Mission Directorate, NASA Headquarters, USA 4 Jet Propulsion Laboratory, California Institute of Technology, USA

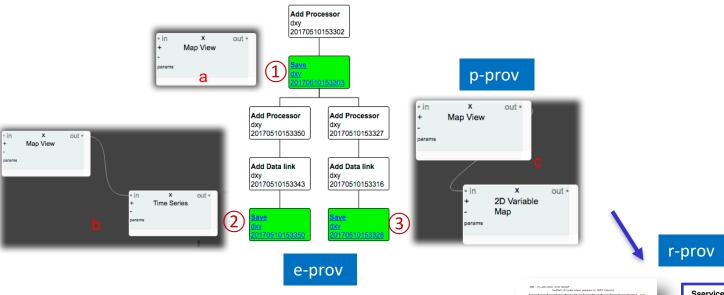
- Background and Motivation
- ☐ Related Work
- ☐ Our method
 - □ Provenance Model
 - Workflow-level Colored Petri Net
 - ☐ Provenance Management
- ☐ Implementations and Experiments
- ☐ Conclusions and Future Work



- Background and Motivation
- ☐ Related Work
- Our Method
 - Provenance Model
 - Workflow-level Colored Petri Net
 - ☐ Provenance Management
- Implementations and Experiments
- ☐ Conclusions and Future Work

Background

- Scientific experiment design requires many trials and errors
 - Back and forth between design-time and run-time
 - Which information should be kept?



	r-prov (retrospective provenance)	p-prov (prospective provenance)	e-prov (evolution provenance)
Design-time	_	Workflow structure	Design history
Run-time	Workflow executionData derivation	_	_

Motivation

■ One integrated model handling all three types of provenance

mputer
RING

Sservice Execution Log: http://hawking.sv.cmu.edu/8080/assets/html/twoDimMap.html?mdelt=GPDL_ESM268var1=cct8prest==999998purpose=GoodTest8ionS=08ionE=360&latS=908itmeS=2004018timeE=2004128months=1.2.3.4.5.6
7.8.9.10.11.128.cale1=08.timage=http://hawking.sv.cmu.edu/8090/static/universalPlotting/mock.png&datz_url=http%53A//hawking.sv

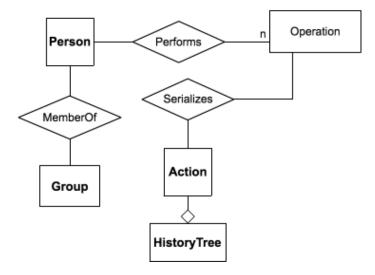
- Background and Motivation
- ☐ Related Work
- Our Method
 - Provenance Model
 - Workflow-level Colored Petri Net
 - ☐ Provenance Management
- Implementations and Experiments
- ☐ Conclusions and Future Work

Related Work

- Related Scientific Workflow Management Systems do not link different types of provenance
- Provenance models do not carry both runtime and design-time provenance
 - Open Provenance Model
 - Provenance Data Model (PROV-DM)

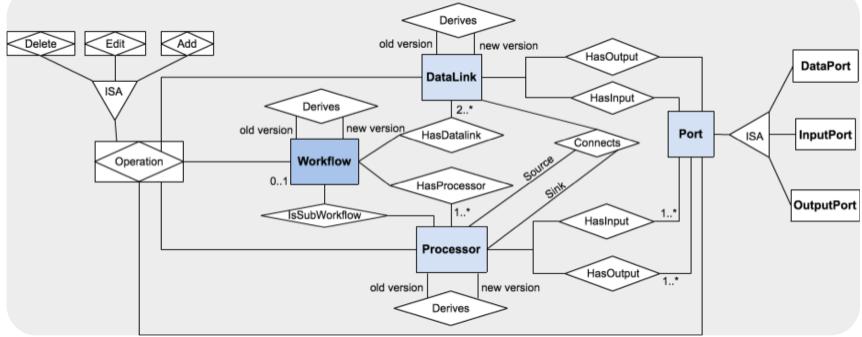
	r-prov	p-prov	evolution	Linked
Kepler	~			
Vistrails	~	~	✓	
Taverna	~			
Trident	~		✓	
DataOne	~			
ОРМ	✓			
PROV-DM	✓			
Our Model	✓	~	✓	✓

- Background and Motivation
- ☐ Related Work
- Our Method
 - ■Provenance Model
 - Workflow-level Colored Petri Net
 - ☐ Provenance Management
- Implementations and Experiments
- ☐ Conclusions and Future Work

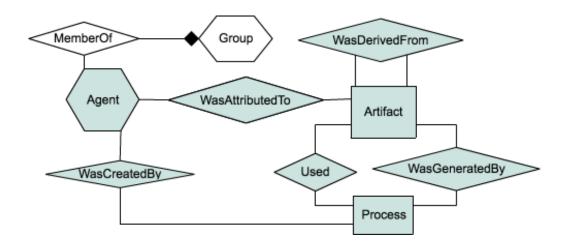

Provenance Model

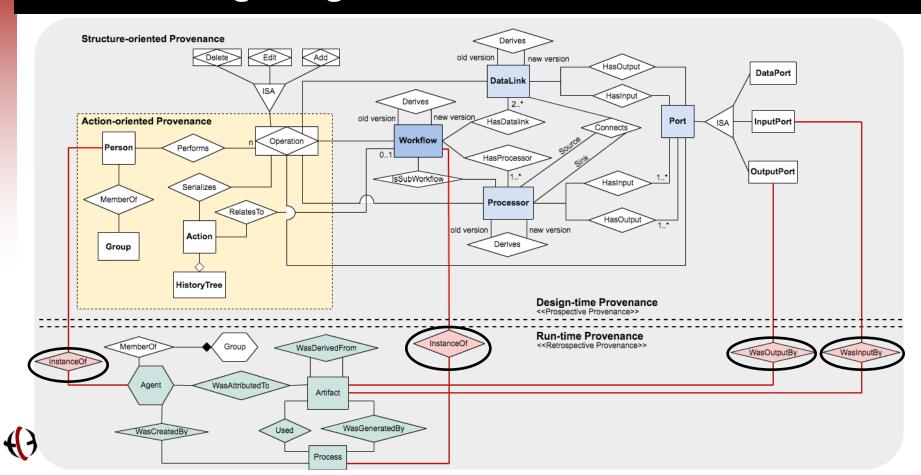
- Design-time Provenance
 - ☐ Action-Oriented Provenance (AOP)
 - ☐ Structure-Oriented Provenance (SOP)
- Run-time Provenance
 - ☐ Retrospective Provenance
- Portals Linking Design-time and Run-time Worlds

Action-Oriented Provenance (AOP)


■ When a researcher implements an operation on a workflow, the operation is serialized to an action node in the AOP.

Structure-Oriented Provenance (SOP)

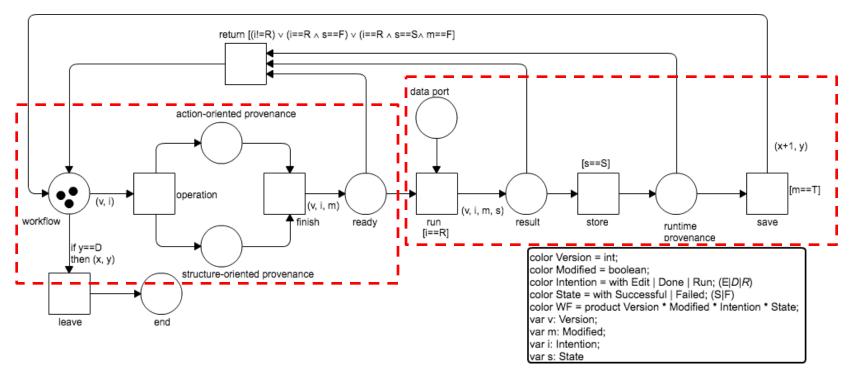

Capture the representation of workflow structure


Retrospective Provenance

 During workflow execution time, provenance captures past workflow execution and data derivation information.

Portals Linking Design-time & Run-time Worlds

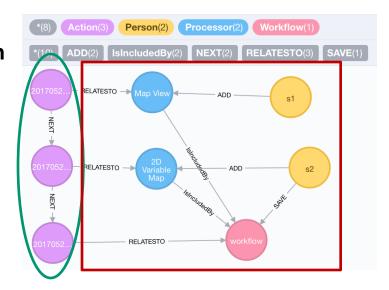
- Background and Motivation
- ☐ Related Work
- Our Method
 - Provenance Model
 - Workflow-level Colored Petri Net
 - □ Provenance Management
- Implementations and Experiments
- ☐ Conclusions and Future Work



Colored Petri nets

- **■** CPN is the language developed by Kurt Jensen et al.
- CPN is one type of graphical modelling language for concurrent systems.
- **■** CPN supports the extensions with time, color and hierarchy.

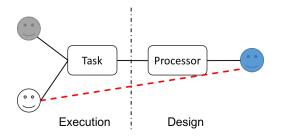
Workflow-level Colored Petri Net

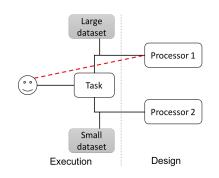


- Background and Motivation
- ☐ Related Work
- ☐ Our Method
 - Provenance Model
 - Workflow-level Colored Petri Net
 - ■Provenance Management
- Implementations and Experiments
- ☐ Conclusions and Future Work

Provenance Storage

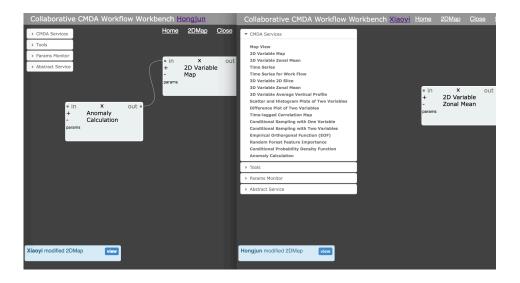
- Three types of provenance are stored separately
- Design-time provenance is stored in graph
- Communicate through APIs


Provenance Management

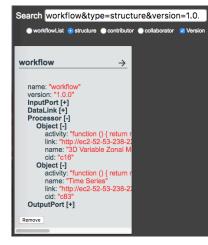

```
☐ SQL-like Query
                                                                                                      Queries written in SQL
    □ Query types: structure,
                                                                                                           Q1a:
      collaborator, contributor
                                                                                                           use wf;
                                                                                                           select processor.pr name
                                                                                                           from include, processor, workflow
                                                                                                           where workflow.wf name='workflow1' and
    ☐ Easy to handle recursive queries
                                                                                                           workflow.version='1.1' and workflow.wf id = include.en id
                                                                                                                  and processor.pr id = include.included id
                                                                                                           union
                                                                                                           select datalink.dl name
   Q1a:
              Select structure
                                                                                                           from include, datalink, workflow
                                                                                                           where workflow.wf name='workflow1' and
              Where workflow.name='W', workflow.version='3'
                                                                                                           workflow.version='1.1' and workflow.wf id = include.en id
                                                                                                                  and datalink.dl id = include.included id:
   Olb:
              Select action
              From AOP, SOP
              Where workflow.name='W', workflow.version='3'
                                                                                                           Select pl. p name, p2. p name
              Limit 2
                                                                                                           From person as p1, person as p2, workflow,action
                                                                                                           Where workflow.wf name='workflow1'
   Q1c:
              Select derivation
                                                                                                                  and workflow.version='1.1'
              Where workflow.name='W', workflow.version='3'
                                                                                                                  and p1.p name!=p2.p name
                                                                                                                  and workflow.wf id = action.en id;
   O2a:
              Select collaborator
              Where workflow.name = 'W', workflow.version = '3
   Q3a:
              Select contributor
                                                                                                             Select person.p name
              Where workflow.name = W', workflow.version = W'
                                                                                                             From person, action, include, workflow
                                                                                                             Where workflow.wf name='workflow1'
   O3b:
              Select entity
                                                                                                                   and workflow.version='1.1'
                                                                                                                   and action.p name = person.p name
              Where workflow.version = W', workflow.version = 3',
                                                                                                                   and include.en id = workflow.wf id
                                                                                                                   and action.en id = include.included id;
   person='s1'
```


Recommendation

- Collaborators are not necessarily in the same domain.
- Different methods are good at different aspects so that they fit in different scenarios.
- A scientific experiment is typically a trial and error process.



- Background and Motivation
- ☐ Related Work
- Our Method
 - Provenance Model
 - Workflow-level Colored Petri Net
 - ☐ Provenance Management
- **□** Implementations and Experiments
- ☐ Conclusions and Future Work



Prototype System

Collaborative workflow design system

■ SQL-like query support

Loading Time and Data Size Experiments

Database: Neo4j

■ Verify the effectiveness of our model

#people	1	2	3
#Actions	4	8	12
#Forks	0	1	2
Loading time	30 ms	43 ms	71 ms
Structure query	3 ms	9 ms	12 ms
Contributor query	13 ms	17 ms	18 ms
Collaborator query	5 ms	9 ms	12 ms
History query	14 ms	20 ms	26 ms
Size	233 KB	243 KB	277 KB

- Background and Motivation
- ☐ Related Work
- Our Method
 - Provenance Model
 - Workflow-level Colored Petri Net
 - ☐ Provenance Management
- Implementations and Experiments
- ☐ Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Developed an integrated data model for workflow provenance management.
- Implemented new applications based on the model, such as advanced query and cross-provenance recommendation.
 - Feasibility and effectiveness

■ Future work

Applicability of our uniform provenance model in large-scale projects

