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Abstract—In the current era of knowledge explosion, it is
becoming increasingly critical to help researchers quickly grasp
the core ideas and methods used in the sea of published articles.
As a first step toward the aim, this paper proposes a novel
approach that simulates the cognitive process of how human
beings read Earth science articles, and automatically identifies
semantic entities from the articles. Among others, one major
objective is to identify the datasets studied in articles. Oftentimes,
however, researchers do not explicitly cite the datasets used. Thus,
we propose a profile-matching method strengthened by a neural
network-based method to identify implicitly cited dataset entities
based on the context. Our experiments have demonstrated the
effectiveness of our approaches.

Keywords—Cognitive computing, automatic paper understand-
ing, semantic entity identification.

I. INTRODUCTION

In order to stand on the shoulders of giants to conduct
scientific exploration effectively and efficiently [1], it is critical
for researchers to keep on reading publications to understand
existing research methods and outcome. However, as the
number of publications increases significantly in the current
era of knowledge explosion, quickly reading and understanding
all related papers remains a substantial challenge for most
researchers. With the advancement of artificial intelligence,
computer scientists have been attempting to train machines
to help people both read and understand research papers.
However, it is not a trivial task for several significant reasons:

1) Nearly all of the information contained within re-
search papers is unstructured, which makes it difficult
to parse papers.

2)  There may not be an agreed upon method for de-
scribing certain things within a domain, for example
phenomena and other science concepts.

3) It is impractical to manually create a big volume of
labeled data to serve as ground truth for machine
learning.

In this project, we aim to adopt cognitive computing
techniques to tackle such challenges. We study how domain
scientists read a paper and understand its major content, and
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To overcome some of the issues associated with combining and the in-
terpretation of multiple satellite-based surface and near-surface wind
information in the hurricane environment, NOAA's National Environ-
mental Satel'te, Data, and Information Service (NESDIS) produces the
operational Multi-satellite-platform Tropical Cyclone Surface Wind
‘Analysis (MTCSWA;
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Fig. 1: How Geo-scientists Identify Semantic Entities in a
Paper

then simulate how the human brain works in order to train
machines. As a first step, we combine rule-based and neural
network methods to simulate how researchers read a paper,
which is a cognitive process to identify important entities from
the article. Without losing generality, we focus on research
papers in the Earth science domain.

Through a series of workshops with Earth scientists, we
have summarized what can generally be learned from an Earth
science paper. At a high level, a paper typically describes how
to conduct an analytical study over some datasets in order to
draw conclusions to support or disprove a scientific hypothesis.
While a dataset may possess observed or computed values
of a number of variables (i.e., properties), one paper usually
focuses on a subset of the variables. A reader thus intends to
learn the data analytics process described in the paper. Such a
cognitive process is illustrated in Fig. la, where a reader has
browsed through a segment of a hurricane paper and identified
some semantic entities related to the data analytics research.
As shown in Fig. la, the reader highlighted an instrument



External 5

Resources
(Reference)

.Jmplicit entity., .

Dataset
Identification

0

Semantic
Entity
Identification

11 Instrument

Preprocessed . \_ Identification

Sentences

Variable
Identification

L

Explicit entity

—

New
Identificati
Profile-based c::\a:‘::’:;on
Analysis
Results
4.2
Expert 3
2 Evaluations ﬁ
4.1 Evaluated
Labeled
Data Results

........... e essssiesesssssststtntntnnnnane

Fig. 2: Framework of Semantic Entity Identification

(NESDIS), a dataset (MTCSWA) and variables studied (several
wind properties). Identification of semantic entities will be a
major first step in helping researchers understand key contex-
tual information about a paper. We hypothesize that machines
can be trained to identify semantic entities within a research

paper.

Our workshops also revealed another common identifica-
tion obstacle. As shown in Fig. 1b on the left-hand side,
some semantic entities can be easily identified (such as in-
struments and variables), while others (such as datasets used)
are more difficult to be directly identified. As shown in Fig.
1b on the right-hand side, the citation of a dataset may not
be explicit. Until recently, many datasets were not assigned
unique digital object identifiers (DOIs). As a consequence,
many geo-scientists are just beginning to cite dataset DOIs
in their papers. For example, from the datasets indexed by
NASA SEDAC! Distributed Active Archive Center (DAAC),
we studied how the datasets are cited in journal papers. Among
about 1,300 publications focusing on atmosphere research,
we found that only 35 (less than 3%) articles actually cite
the dataset DOIs. Additionally, since many dataset names are
sometimes descriptively long, authors often do not use the full
name to cite the datasets either. Interestingly, however, human
readers often experience no difficulties in deducing which
datasets are mentioned in a paper. Our study over a reader’s
decision making process of identifying the cited datasets has
exposed a heuristic process. As shown in Fig. 1, if a dataset is
implicitly cited, in a contextual section of the paper, authors
usually mention the instrument that collects the datasets, the
project that creates the dataset, as well as the specific variables
of the dataset studied in the paper.

Based on our understanding of how human beings read a
paper, we have developed a technique that trains a machine
to simulate such a cognitive process of identifying semantic
entities in a research article. Our contributions are three-fold:

1)  We have formalized a cognitive process to identify
semantic entities in research papers.

2)  We have developed a neural network model to iden-
tify datasets implicitly cited given a context of sur-
rounding entities.

Thttp://sedac.ciesin.columbia.edu/

3)  We have implemented experiments to verify the ef-
fectiveness of our methods.

The remainder of the paper is organized as follows. Sec-
tion II describes an overall framework and formally defines
the problem of identifying semantic entities from academic
publications. Section III presents the detailed profile-based
and neural network-based methodologies. Section IV presents
experiments and discussions. Section V discusses related work.
Finally, Section VI draws conclusions.

II. OVERALL FRAMEWORK

The blueprint of our overall methodology and its compris-
ing steps are presented in Fig. 2. Two key components make
our methodology unique and innovative. First, the Semantic
Entity Recognition for Earth Science uses external resources
(including metadata catalogs and controlled vocabularies such
as a dictionary of instruments that are known in the Earth
science field) as references to guide entity extraction and
recognition (i.e., labeling) from unstructured text, in order to
build a large training set to seed the subsequent auto-learning
component. This process is both objective and can scale up as it
requires minimum human interferences. Second, the machine
learning-powered auto-learning goes beyond heuristics-based
entity recognition and leverages state-of-the-art machine learn-
ing technique to incrementally learn and refine the rules and
patterns through iterations. To make the overall methodology
easier to understand, we have labeled each step using step
numbers in Fig. 2.

A. Stepwise Methodology

Step O consists of preprocessing unstructured text. Prepro-
cessing covers tasks such as paper format transformation, and
identifying specific sections of a paper (such as abstract, in-
troduction, methodology, and conclusions). A number of tools
are adopted, such as the Apache Tika toolkit> for converting a
paper from PDF format to HTML, and the pdffigures tool®
for analyzing and extracting figures, tables and associated
captions. “The Structure of a Scientific Paper” [1] is used as
a guide to identify sections such as Introduction, Background,

2https://tika.apache.org/
3pdffigures.allenai.org



Data and Methods, and References. Dividing sections is useful
as the probability of finding certain entities is larger in certain
sections as compared to others. For example, the possibility
of finding citation of a dataset is higher in section Data and
Methods than in section Introduction.

Step 1 aims for semantic entity recognition. We first build
multi-dimensional profiles for Earth science-oriented seman-
tic entities using their existing metadata. For example, we
construct profiles for each NASA dataset using the metadata
records stored in the Common Data Repository (CMR) catalog.
Such profiles are used to identify datasets in papers through
match-making processes. Specific details will be described in
Section III.

Step 2 aims for profile-based analysis, and the profile-
based analysis results will then be labeled. Labels such
as wvariable, organization, and dataset are attached to
corresponding sentences. Here is an example sentence labeled
with three types of semantic entities that were identified:

PW data was obtained from National Centers for Environment
Protection/National ~ Center for Atmospheric Research
(NCEP/NCAR) reanalysis data, {variable}, {organization},
{dataset}

Step 4 consists of an optional evaluation by a human
subject matter expert. Having an expert-based validation step
helps to confirm and enhance the quality of our training set,
which will in turn improve the effectiveness of our model
training process. The identified semantic entities and the
surrounding sentences in the training set will be sent to
experts for validation. Passing validation, the sentences will
be properly labeled and added into the training set (Step 4.1).
New patterns and rules may be identified from the validated
results (Step 4.2). Incorrect sentences will be removed from
the training set. Newly identified patterns and rules will be
added to the pattern library (Step 5). The overall process will
iterate until the training datasets remain stable.

B. Semantic Entity Extraction

The goal of this research is to automatically extract key
semantic entities from research papers which are important
for user to understand the papers. For example, after reading
a paper, a geoscientist intends to find out the answers to
questions such as: what instruments or plat forms are used
in the paper? and what variables and datasets are studied? In
general, key entities can be divided into two types in terms of
how they are mentioned or described in papers: explicit entity
and implicit entity. An explicit entity is mentioned by the entity
name explicitly, while an implicit entity is usually mentioned
implicitly and described by sentences in close proximity to the
entity. In the Earth science domain, instrument, platform
and variable are typically explicit entities that are cited by
certain names, but datasets are usually an implicit entity.
Our investigation reveals that Earth scientists typically do not
cite datasets directly nowadays. However, in the domain of
medical science, most concepts are explicit entities because
they are required to be precisely referenced.

Therefore, we have developed different methods to extract
explicit entities and implicit entities, respectively, as shown

in Fig. 2. For explicit entities, it is intuitive to extract them
by using handcrafted rules and patterns. For implicit entities,
extra information other than entity names is required to help us
identify them. Furthermore, extracted explicit entities can be
leveraged to help identify implicit entities. After studying how
Earth scientists identify possible datasets mentioned in a paper,
we combine rule-based and neural-network-based methods to
identify possible datasets. The two methods are complementary
with each other. Handcrafted rules are good at fine-grained
linguistic analysis, while deep learning is effective at coarse-
grained tasks. In other words, rules help us find “precise”
results, which can be used by deep-learning algorithms to train
models. Afterwards, deep learning algorithms are adopted to
find missing results.

Definition 2.1 (Semantic Entity Identification): The
process of identifying semantic entities is formalized as to
automatically identify key semantic entities eq, es, ..., €, from
contents of paper p. Such entities can be categorized into two
classes, explicit entity Fx and implicit entity Im. In Earth
Science domain, instrument [, variable V' and platform P
are explicit entities, I, V, P € Ez. Dataset D is an implicit
entity type, D & Im. Therefore, entities ej,es,...,e, are
represented as 41,...,7; € I, vy,...,v; € V, p1,..,pr € P,
and dy,...,d,, € D where i + 5+ k+m = n.

III. SEMANTIC ENTITY IDENTIFICATION METHODOLOGY

In this section, we present a technique to identify semantic
entities in research papers. Without losing generality, we focus
on research papers in the Earth science domain. We first define
heuristic rules to extract explicit entities, e.g., instruments and
variables. Then we present weighted-profile-matching method
and neural-network-based method to identify implicit entities,
specifically datasets.

Our technique basically simulates the cognitive process
illustrated in Fig. 1b. For each paper (left-hand side “doc-
ument”), variables (green rectangles) and instruments (blue
rectangles) are first extracted based upon their libraries. Af-
terwards, on the right-hand side in ’paper,” we can infer areas
(orange dashed boxes) possibly describing datasets (red rect-
angles) around previously extracted variables and instruments.

A. Heuristic Extraction

Rule-based extraction is applied to identify explicit entities,
i.e., instruments, platforms and variables. In the simplest case,
instruments and platforms can be identified by entity names.
In more complex cases, the same variable names may belong
to multiple higher-level concepts. In order to address possible
ambiguity, we have to consider both name and contextual in-
formation, i.e., class information, when identifying a variable.
Here we introduce the extraction rules for instruments and
variables only, while the rules for platforms are similar to those
for instruments.

1) Instrument: The name of an instrument typically com-
prises a full name and an acronym. For example, ”GPS” stands
for ”Global Positioning System.”

Definition 3.1 (Instrument): The name of an instrument is
a tuple t; = (S,L), where S is the short name for the
instrument, and L is its long name.



In the instrument identification process, both the long name
and short name will be considered. When short names are
found in a sentence, we further check if their long names
appear in the full text of the paper. At its first appearance in
a paper, an instrument name is mostly in the format of S(L)
or L(S). Offline, we apply a known approach in biomedical
text [2] to extract all long names and their acronyms from
the content of papers in the corpus to enrich our instrument
dictionary.

The rules of matching each instrument within a sen-
tence are summarized as follows: (1) Use L-searching in the
sentence: if L is found, then consider the instrument as a
candidate; (2) Use S-searching in the sentence and also check
if L appears in the full content of the paper: if S and L are
both found, then consider the instrument as a candidate; (3)
If L is included by another candidate’s full name, discard the
candidate with shorter name.

2) Variable: Every variable has a name and one or more
class attributes (e.g., GCMD topic). The attributes are “’topic”
and “term,” which classify the variable into a specific context.
For example, “sea surface temperature” is the name of a
variable, which is classified into topic "OCEANS” and term
"OCEAN TEMPERATURE.”

Definition 3.2 (variable): A variable is a tuple ¢, =
(n,{c}1..x), where n is the variable name, and each ¢ is a
set of attribute keywords made up of a topic keyword T'P and
a term keyword T, i.e., ¢ = {c|c € (TP, T)}.

If one variable has multiple class attributes, for example,
t, = (rainfall amount, {(Precipitation, Precipitation
Amount), (Precipitation, Rain)}), the variable named
“rainfall amount” has two class attributes, which are topic
”Precipitation,” and two terms ”Precipitation Amount” and
”Rain.”

The rules of matching each variable ¢, within a sentence
are summarized as follows. (1) Remove stop words and special
characters in the sentence; (2) If n is less than four words, %,
can be a candidate only when n is completely matched in
the sentence; (3) If n is more than four words, calculate LCS
(longest common subsequence) between n and the sentence.
If the ratio of LCS to sentence length (number of words)
is greater than a predefined threshold (e.g., 0.7), ¢, will
be considered as a candidate; (4) If the context keywords
¢(TP,T) of one of the candidate variables both appear in
the full content of the paper and the paragraph containing the
sentence (to be stricter), the variable mentioned in the sentence
will be considered as a candidate.

After the explicit entities are extracted through our heuristic
methods, we use them to train the Conditional Random Field
(CRF) model [3] to refine the results.

B. Weighted-Profile-Matching Dataset Extraction

After extracting explicit entities, we utilize them to help
identify implicit entities such as datasets. According to com-
mon writing practices among Earth scientists, datasets are
typically mentioned surrounded by some explicit entities as
illustrated in Fig. 1b. Hence, the first step is to identify
the potential area (sentences) describing a dataset, and then
determine which dataset is mentioned. We have developed a
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Fig. 3: Profile Matching Framework

profile-oriented approach to realize this goal. The overview of
our profile-matching method is shown in Fig. 3. Without losing
generality, all NASA Common Metadata Repository (CMR)
datasets are examined and profiled based upon their references
to attributes including keywords, platforms, instruments, and
variables. Such dataset profiles are stored in a database as
domain knowledge. For a given paper, all areas (a sequence
of sentences) that potentially cite a dataset are identified. For
each such area, we build its profile based on its surrounding
identified explicit entities (e.g., instruments, variables, loca-
tions, and semantic ontology keywords). The full content of
the paper is taken into consideration as well. Thus, the profile
of each potential dataset is compared with all CMR dataset
profiles in the database in order to confirm its identity.

The pseudo code of the algorithm is summarized in Alg.
1. In lines 1-3, we construct profiles for each CMR dataset.
The attributes considered are extracted from the metadata of
the datasets, including name, a paragraph of summary, instru-
ment(s), variable(s), platform(s), and so on. In addition, the
summary text is further examined to extract more information
such as locations and instruments. Such profiling will result in
an attribute vector for each of the CMR datasets, and can be
preprocessed offline and stored for real-time query.

In line 6, we locate potential areas in each paper where
explicit entities (i.e., instruments, platforms or variables) are
mentioned. Line 8 intends to construct a profile vector for each
potential area. In lines 10-13, the constructed profile of each
potential area is compared with that of every CMR dataset. As
shown in Fig. 3, the profile is made up of a feature factory,
which can be further extended and enriched in the future. We
build the feature factory through multiple features extracted
from the paper set and dataset, respectively. Given different
weights on features based on domain knowledge, a weighted
score is calculated to measure each dataset candidate. The
CMR dataset profile with the highest score is considered the
most similar one to the specific potential area in the paper.

For different features in the feature factory, we apply



different rules to identify them, and different comparison
methods to calculate similarity. (1) Dataset name is matched
by the LCS algorithm, which similarity is measured by the
ratio of the length of LCS to that of the name. (2) There are
hierarchical relations among locations where one location can
be included by another parent location. For example, "USA”
is included in ”North America.” Every location is extracted to
match either a leaf node or a parent node. Note that locations,
instruments, and variables are extracted as sets. Therefore, a
similarity score can be computed between 0 and 1 based upon
the overlap of elements in the profile of the area and the
dataset. (3) Semantic words are matched and ranked in all
possible root words in the ontology. Without losing generality,
in our research we adopt the Semantic Web for Earth and Envi-
ronmental Terminology (SWEET, https://sweet.jpl.nasa.gov/).
Each semantic word extracted will receive a computed score
to the root, which results in one or more root score vectors.
The similarity of two vectors for the same root is calculated
using cosine similarity.

Algorithm 1: Dataset Profiling Matching

Result: Extracted datasets

Input : paper p, weight vector W + (w;, w;, w,),
dataset collection D

Output: datasets studied in paper

1 foreach dataset d do
di,d,,d, < extract instruments, platforms and
variables from summary d

end

max_score_dataset < null

max_score < 0

potential Sections < less than 10 consecutive
sentences with moret than one type of entities among
instruments, platforms and variables.

[ 5]

= L7 T N

7 foreach sec in potentialSections do

8 sec;, secp, sec, <—extract instruments, platforms and
variables from sec

9 foreach dataset d do

10 score, < match(sec,, dp)

1 score; < match(sec;, d;)

12 score, < match(sec,, d,)

13 S = (scorey, score;, score,, score,)

14 Score =W - S

15 if Score > max_score then

16 max_score < Score

17 max_score_dataset < d

18 end

19 end

20 end

C. Neural Network-Powered Entity Extraction Framework

As explained in the previous section, different attributes
in a constructed dataset profile vector weigh differently when
computing similarity. However, it is hard to predefine the
attribute weights in the profile-matching method. Therefore,
we introduce a neural-network-based method to learn such
weights and extract implicit entities incrementally. The Con-
tinuous Bag of Words (CBOW) is a technique used in Natural
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Fig. 4: CBOW-powered Framework

Language Processing deep learning [4], which uses context
to predict a missing word. In the CBOW model, context
is represented by multiple words surrounding a given target
word. In our research, we propose a Neural Network Entity
Extraction (NNEE) Framework that applies the CBOW model
to predict/identify a dataset based on the context (surrounding
explicit entities) in a paper. The framework is illustrated in
Fig. 4, together with an example. Every entity is regarded as a
word, and explicit entities in one identified potential area make
up one sentence to train the NNEE model. For example, one
paper contributes such a sentence (igdog) comprising a dataset
d96 surrounded by instrument ig. After training, the NNEE
model will be able to predict the missing dataset (dyg) given its
surrounding instrument (79) and platform (p2). The input layer
is set to have as many neurons as there are entities extracted
from papers’ potential areas for training. The hidden layer size
is set to the dimensionality of the resulting word vectors. The
size of the output layer is the same as the input layer. Thus,
assuming that the vocabulary for learning word vectors consists
of V entities and N to be the dimension of word vectors,
the input to hidden layer connections can be represented by a
matrix of size VXN with each row representing an entity. In the
same way, the connections from the hidden layer to the output
layer can be described by a matrix of size NxV. In this case,
each column of the output matrix represents a word from the
given vocabulary. The input and output matrices are updated
using backpropagation [5], as new contexts are discovered in
recently published papers and added into the ground truths.

One example is a bag of entities i1, i3, p1, v2” Wwhich
are identified as explicit entities in an area, representing two
instruments (¢; and 4s), one platform (p;1), and one variable
(v2) are mentioned in the area. Another example i1, p1, v1”
represents one instrument (¢1), one platform (p;), and one
variable (v1) mentioned in another area. Given the context of
explicit entities, our goal is to extract the most relevant dataset
referenced in the context.

1) Neural Network Entity Extraction Algorithm: The cost
function is defined as L = }_, plogp(d|cg), where d is
a dataset from the entity set of dataset, D. The goal is to
maximize the log probability of the dataset given any context
entities. Mathematically, the cost function is

J = —logp(d|cq) (1
where ¢q4 = €c_my-oy€c—1,€chls -y Ectms M 1s the size
of window, and e._,,...,€c—1,€c41; .- s Ectm are extracted

entities in the context using the heuristic method described
in Section III-A. p(d|cq) is commonly defined as a softmax
function, that is:



exp(E'S - cq)
Y eererp(E'L - ca)

where d is the target dataset entity, and c4 is the context of
entities surrounding d. F’ Z; is the row of embedding of entity
d in embedding matrix E’. Considering a paper as shown in
Fig. 4, the potential area is extracted by identifying more than
one type of explicit entity in a range of sentences (described
in Section III-B). Each candidate area is transformed as an
input to the model. Specifically, if an area includes iy, 72, p1,
v9,” the input vector is an average embedding of iy, 72, pi,
v2.” They can be randomly initialized in the beginning. The
output layer will obtain the possibilities for each entity, so that
datasets can be identified and the most relevant one selected.

pldleq) = o(E'g - ca) = )

After each round of the training process, the model will
update entity embeddings. Hence, the model can help enhance
the embedding results. When a new paper is published, it can
become a new input to aid in further training of the model.

2) Negative Sampling: To achieve efficient optimization,
we apply the negative-sampling technique [6]. A small set of
entities are sampled from the training data to calculate softmax.
Given a negative sample size K, The objective function in Eq.
1 is updated as:

K
J=—logo(Ey-cq) — Zlog a(—Ed - Cq) 3)

=1

where E, is one of the negative samples from & samples. The
model is updated by the stochastic gradient descent algorithm.
The derivation of output and embeddings are as follows:

aJ(E)

OF » :(U(Euf - E, _]ch[ullﬂ))E'U

‘ @)
0J(E) &
) - (o (B B - LB

k=0

where I, [uf] is an indicator function to indicate whether u}
is the context entity of c¢g. When k = 0, u{ = c4. The pseudo
code of our CBOW-powered entity extraction algorithm is
summarized in Alg. 2.

Algorithm 2: NNEE Dataset Extraction
Result: Extracted datasets
Input : Training set (entity e € {I, P,V}), embedding
dimension r, window size k
Output: Entity embeddings E € RIN(©)Ixr

1 Initialize E

2 foreach ¢ in training set do

3 foreach entity e in t do
cw _ pold 2.J(E)
4 Eéww_Eg —n- ol
/* 1 1s learning rate, see Eq. 4
*/
5 end
6 end

IV. EXPERIMENTS

In this section, we evaluate our proposed methods on real
publication datasets in the Earth science domain.

A. Experimental Setup

The data set of publication dataset is downloaded from
the website of Socioeconomic Data and Applications Center
(SEDAC), which is a NASA data center hosted at Columbia
University. The dataset is a collection of publications with
manually identified citations over sedac data collection, which
is publicly available*. A sedac data collection may contain
multiple data sets. However, since the website only provides
citations of data collections, we use sedac data collection as an
equivalent to dataset in our entity identification experiments. A
data collection is cited in a paper, meaning that it is mentioned
or referenced in the paper.

Publication: Considering the domain expertise possessed
by our research team, we concentrate on papers on atmosphere
research (i.e., Science Direct’, Wiley Online Library(’, and
American Meteorological Society’). Since our technique re-
quires access to full content, papers not publicly accessible
were not considered. Some older papers only have PDF
versions, which introduce a lot more parsing difficulties. Thus,
they are excluded in this experiment. We thus crawled and
parsed a total of 849 publications. In this testbed, about 90.81%
papers cite one data collection, 9.19% papers cite two data
collections, and only a few cite more than two data collections.
As a result, we found 195 papers citing sedac data collections
by collection names, which can be regarded as ground truth.

Sedac data collection: There are 41 sedac data collections
in total.

Semantic entities: The semantic entities studied in our
paper include instruments, platforms, datasets and variables.

The numbers of the entities are summarized in Table 1.
TABLE I: Source of Semantic Entities

Instrument 1,391
Platform 821
Variable 3,090

Data collection 41

B. Entity Extraction Experiments

1) Explicit Entity Extraction: From the 849 papers in the
test bed, we used the extracted entities through our heuristic
methods to train the Conditional Random Field (CRF) model
[3]. A randomly selected 14 new papers from the Dust
area were identified for manual evaluation. A team of five
domain scientists from NASA read those papers throughly
and recorded their identified entities for each paper indepen-
dently. To calculate the accuracy, precision is the number
of correct entities divided by the number of all identified

“http://sedac.ciesin.columbia.edu/citations-db
Shttp://www.sciencedirect.com
Shttp://onlinelibrary.wiley.com/
7http://journals.ametsoc.org
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results, while recall is the number of correct entities divided
by the number of entities that should have been identified.
The calculation of F-score is: F; = 2 - %. The
results of F-score comparing between the heuristic method
and the machine learning method in identifying variables,
platforms and instruments are summarized in Fig. 5a. From
the results, both methods achieve high accuracy in identifying
instruments and platforms than variables, because platform
and instrument names are more formalized while variables
names are less rigorously defined. Additionally, CRF increases
15% in identifying explicit entities comparing to the heuristic
extractions in average. This experiment shows that the heuristic
method can help us build large amount of training data, then
machine learning can build a model to refine the results.

2) Implicit Entity Extraction: Based on the extracted ex-
plicit entities, the corresponding sections were exported as
candidate sections to evaluate the profile-matching method and
the neural-network method in extracting implicit entities, i.e.,
sedac data collections.

For the profile-matching method, all dataset profiles were
preprocessed to extract entities and stored in a database.
Profile-matching method selects the dataset with the highest
matching score within the candidate section. For our neural-
network-powered method, the exported sections with sedac
data collections explicitly mentioned were used as ground
truth (273 sections). In the training process, we set the count
of ignoring word as 1, window size as 3, the size of each
embedding as 20, and the number of negative samples as 5.
We used 30%, 50%, 70% and 90% of ground truth data to train
the NNEE model, and the same number of candidate sections
to match in the preprocessed dataset profiles. The remaining
data is for testing. After training the NNEE model, we used
the model to output datasets by inputting a context of explicit
entities from the test data. If the output dataset falls in the
same cluster as the test data, it is considered as correct.

The first experiment evaluates the accuracy of the results
by calculating the F-score. Fig. 5b shows that the F-score
of our NNEE method is significantly higher than that of the
profile matching-based method. The F-score for the profile-
matching method remains unchanged as the training data size
is incrementally increased, but the F-score for the NNEE
method increases if more training data is added. If new data
is added into the training data, the model was retrained and
enhanced.

The second experiment compares the running time to train
the NNEE model and profile matching method. Fig. 5c shows
that the running time of using different sizes of training data in
NNEE is less than five seconds and improves slowly. However,
the query time of profile matching is almost linearly increasing
as the input data is incrementally increased. This is due to the
fact that the query time of profile matching is proportional to
the size of input.

V. RELATED WORK

Knowledge extraction is widely applied and studied in
many areas, such as natural language processing, text mining
and knowledge graph. The task is to extract information
from unstructured and ambiguous text, such as sentences and
documents, and then use the knowledge to build knowledge
base systems. Google Knowledge Graph® (name changed to
Knowledge Vault) [7] project integrates both structured data
(e.g., Freebase®, Wikipedia'®) and unstructured data (e.g., the
web) to answer user queries. DeepDive11 [8] from Stanford
provides an engineering procedure to process dark data into
databases. GeoDeepDive [9] is an extension of DeepDive,
focusing on processing dark data from geological articles.
Microsoft Academic Graph (MAG)'? [10] builds a hetero-
geneous graph aiming to support generic scientific research
on scholarly big data. IBM Watson [11] aims to create
a question answering (QA) computing system by learning
domain knowledge from various sources. On building these
knowledge bases, knowledge extraction relies on extensive
human involvement by defining hand-crafted extraction rules
or hand-labeled training data. According to Nickel et al. [12],
existing knowledge base construction efforts can be divided
into two categories, based on whether a fixed or open lexicon
of entities are employed. In a schema-based approach, on the
one hand, tuples (entities and relationships) are represented by
globally unique identifiers, and all possible relationships are
predefined in a fixed vocabulary. In a schema-free method,
on the other hand, an Open Information Extraction (OpenlE)
[13] technique is adopted so that tuples are represented via
normalized but not disambiguated strings.

8https://www.google.com/intl/en_us/insidesearch/features/search/knowledge.html

%https://developers.google.com/freebase/

10https://en.wikipedia.org/wiki/Wikipedia:Database_download

http://deepdive.stanford.edu/

2https://www.microsoft.com/en-us/research/project/microsoft-academic-
graph/



Entity extraction is the first and basic step in the knowledge
extraction process, which is the focus of our paper. Extracting
entities from unstructured textual data remains a challenging
task due to the uncertainty of description in unstructured
text. One solution with high precision is to specify rules
and ontologies [14] manually. In regard to efficient semantic
entity extraction methods, works can be viewed from three
supervision aspects, i.e., supervised learning, semi-supervised
learning and unsupervised learning. Supervised learning is the
most common way in knowledge extraction. Named entity
recognition [3] is one representative technique, which uses
the heuristically-labeled training data to train a Conditional
Random Field (CRF) [15] model. However, such methods
demand a lot of labeled data, which is expensive and time
consuming.

Unsupervised learning to extract knowledge is the cheapest
way to induce entities and relations from corpus. For example,
[14] introduces a system without requiring human input to
extract entities and relations. However, the extracted results
led to significant amount of noises and lack of semantics.
For semi-supervised classification problem, [16] and [17]
extend the semi-supervised expectation-maximization (EM)
[18] algorithm for flat and hierarchical classification tasks,
respectively. They can discover new classes from unlabeled
data. For example, [19] improves the unsupervised learning
system.

In contrast to existing general-purpose entity recognition
methods, our approach focuses on domain-oriented entity
extraction from research articles. Cognitive process is stud-
ied thus simulated to develop a heuristics-based and neural
network-powered approach, which provides a solution to in-
crementally build a large training dataset with minimal manual
intervention.

VI. CONCLUSIONS

In this research, we have developed techniques to auto-
matically extract semantic entities from unstructured academic
papers, simulating the cognitive process of how humans read
articles. A layered framework is presented to extract implicit
entities and explicit entities. Our experimental results show that
such a model achieves higher accuracy than using rule-based
or profile-matching method alone. Although our work focuses
on the Earth science domain, our technique can be applicable
to other domains where semantic entities may be implicitly
referenced in papers.

We plan to continue our research work in the following
three directions. First, we will study deep learning methods
to further enhance the accuracy of implicit semantic entity
extraction. Second, we will build a software portal to enable
and facilitate researchers in providing evaluation results which
will be used as incremental ground truths to better train our
model. Third, we will try to extend our approach to other
research domains such as astronomy.
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